Gusty wind disturbances and large-scale turbulent structures in the neutral atmospheric surface layer

  • HaiHua Gu
  • GuoHua Wang
  • Wei Zhu
  • XiaoJing ZhengEmail author


This study analyzes the contribution of large-scale turbulent structures, including very large-scale and large-scale motions, to the streamwise turbulent kinetic energy and momentum flux in comparison with the contribution of the gusty wind disturbances based on the high-quality data obtained from the field measurements conducted in the near-neutral surface layer. The results of this study denote that the gusty wind disturbances contain only a portion of the energy contained in very large-scale motions and do not contain any of the information contained in large-scale motions. The amount of lost contributions to the streamwise turbulent kinetic energy and momentum flux increases linearly with the friction velocity, eventually becoming 53% and 67%, respectively. This indicates that large-scale turbulent structures (very large-scale motions and large-scale motions) better describe the coherent structures in the atmospheric surface layer when compared with the gusty wind disturbances.

atmospheric surface layer gusty wind disturbances large-scale motions 


  1. 1.
    A. G Davenport, Proc Inst Civ Eng. 28, 187 (1964).Google Scholar
  2. 2.
    Q. Zeng, X. Cheng, F. Hu, and Z. Peng, Adv. Atmos. Sci. 28, 1 (2010).CrossRefGoogle Scholar
  3. 3.
    S. Barth, F. Böttcher, and J. Peinke, Proc. Appl. Math. Mech. 28, 561 (2010).Google Scholar
  4. 4.
    O. Brasseur, Mon. Wea. Rev. 28, 5 (2001).ADSCrossRefGoogle Scholar
  5. 5.
    S. Goyette, O. Brasseur, and M. Beniston, J. Geophys. Res. 28, 4374 (2003).Google Scholar
  6. 6.
    R. H. Sherlock, J. Aeron. Sci. 28, 53 (1937).CrossRefGoogle Scholar
  7. 7.
    M. E. Greenway, J. Wind Eng. Indust. Aerodyn. 28, 61 (1979).CrossRefGoogle Scholar
  8. 8.
    C. J. Wood, J. Wind Eng. Indust. Aerodyn. 28, 385 (1983).CrossRefGoogle Scholar
  9. 9.
    Z. PetkovSek, Geofizika 28, 41 (1987).Google Scholar
  10. 10.
    X. L. Cheng, Q. C. Zeng, and F. Hu, Chin. Sci. Bull. 28, 3595 (2012).CrossRefGoogle Scholar
  11. 11.
    X. Cheng, L. Wu, F. Hu, and Q. C. Zeng, J. Geophys. Res. 117, D08113 (2012).ADSGoogle Scholar
  12. 12.
    L. Wu, X. Cheng, Q. Zeng, J. Jin, J. Huang, and Y. Feng, J. Geophys. Res. Atmos. 28, 5976 (2017).ADSCrossRefGoogle Scholar
  13. 13.
    Q. L. Li, X. L. Cheng, and Q. C. Zeng, Atmos. Ocean. Sci. Lett. 28, 52 (2016).CrossRefGoogle Scholar
  14. 14.
    X. L. Cheng, Q. C. Zeng, F. Hu, and Z. Peng, Clim. Environ. Res. 28, 227 (2007).Google Scholar
  15. 15.
    N. Hutchins, and I. Marusic, Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci. 28, 647 (2007).ADSCrossRefGoogle Scholar
  16. 16.
    J. C. R. Hunt, and J. F. Morrison, Eur. J. Mech.-B/Fluids 28, 673 (2000).CrossRefGoogle Scholar
  17. 17.
    A. J. Smits, B. J. McKeon, and I. Marusic, Annu. Rev. Fluid Mech. 28, 353 (2011).ADSCrossRefGoogle Scholar
  18. 18.
    M. Horiguchi, T. Hayashi, A. Adachi, and S. Onogi, Bound.-Layer Meteorol 28, 179 (2012).ADSCrossRefGoogle Scholar
  19. 19.
    M. Guala, S. E. Hommema, and R. J. Adrian, J. Fluid Mech. 28, 521 (2006).ADSCrossRefGoogle Scholar
  20. 20.
    B. J. Balakumar, and R. J. Adrian, Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci. 28, 665 (2007).ADSCrossRefGoogle Scholar
  21. 21.
    J. H. Lee, and H. J. Sung, J. Fluid Mech. 28, 80 (2011).ADSCrossRefGoogle Scholar
  22. 22.
    M. Vallikivi, B. Ganapathisubramani, and A. J. Smits, J. Fluid Mech. 28, 303 (2015).ADSCrossRefGoogle Scholar
  23. 23.
    N. Hutchins, K. Chauhan, I. Marusic, J. Monty, and J. Klewicki, Bound.-Layer Meteorol 28, 273 (2012).ADSCrossRefGoogle Scholar
  24. 24.
    G. Wang, and X. Zheng, J. Fluid Mech. 28, 464 (2016).ADSCrossRefGoogle Scholar
  25. 25.
    R. Mathis, N. Hutchins, and I. Marusic, J. Fluid Mech. 28, 311 (2009).ADSCrossRefGoogle Scholar
  26. 26.
    A. C. W. Baas, and D. J. Sherman, J. Geophys. Res. 110, F03011 (2005).ADSGoogle Scholar
  27. 27.
    A. C. W. Baas, Geomorphology 28, 3 (2008).ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    A. C. W. Baas, Geophys. Res. Lett. 33, L05403 (2006).ADSCrossRefGoogle Scholar
  29. 29.
    X. J. Zheng, J. H. Zhang, G. H. Wang, H. Y. Liu, and W. Zhu, Sci. China-Phys. Mech. Astron. 28, 306 (2013).ADSCrossRefGoogle Scholar
  30. 30.
    G. H. Wang, X. J. Zheng, and J. J. Tao, Phys. Fluids. 28, 1 (2017).Google Scholar
  31. 31.
    D. S. Li, T. Guo, Y. R. Li, J. S. Hu, Z. Zheng, Y. Li, Y. J. Di, W. R. Hu, and R. N. Li, Sci. China-Phys. Mech. Astron. 28, 94711 (2018).ADSCrossRefGoogle Scholar
  32. 32.
    Z. Zheng, Z. T. Gao, D. S. Li, R. N. Li, Y. Li, Q. H. Hu, and W. R. Hu, Sci. China-Phys. Mech. Astron. 28, 94712 (2018).ADSCrossRefGoogle Scholar
  33. 33.
    H. Y. Liu, T. L. Bo, and Y. R. Liang, Phys. Fluids 28, 035104 (2017).ADSCrossRefGoogle Scholar
  34. 34.
    J. C. Wyngaard, Q. J. Roy Meteor. Soc. 28, 316 (1992).Google Scholar
  35. 35.
    T. Foken, M. Goockede, M. Mauder, L. Mahrt, B. Amiro, and W. Munger, in Handbook of Micrometeorology (Springer, Netherlands, 2004), p. 181.Google Scholar
  36. 36.
    M. Farge, Annu. Rev. Fluid Mech. 28, 395 (1992).ADSCrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • HaiHua Gu
    • 1
  • GuoHua Wang
    • 1
  • Wei Zhu
    • 1
  • XiaoJing Zheng
    • 2
    Email author
  1. 1.Key Laboratory of Mechanics on Disaster and Environment in Western ChinaLanzhou UniversityLanzhouChina
  2. 2.Research Center for Applied Mechanics, School of Mechano-Electronic EngineeringXidian UniversityXi’anChina

Personalised recommendations