High-throughput screening for biomedical applications in a Ti-Zr-Nb alloy system through masking co-sputtering

  • Xue-Hui Yan
  • Jiang Ma
  • Yong ZhangEmail author


A method of co-sputtering deposition combined with physical masking was applied to the parallel preparation of a ternary Ti-Nb- Zr system alloy. Sixteen independent specimens with varying compositions were obtained. Their microstructure, phase structure, Young’s modulus, nanoindentation hardness, and electrochemical behavior in a phosphate buffer solution (PBS) were studied in detail. It was revealed that the Ti-Zr-Nb alloys possess a single BCC structure. As confirmed via nanoindentation tests, the Young’s modulus of the specimens ranged from 80.3 to 94.8 GPa and the nanoindentation hardness ranged from 3.6 to 5.0 GPa. By optimizing the composition of the specimens, the Ti34Zr52Nb14 alloy was made to possess the lowest modulus in this work (76.5 GPa). Moreover, the Ti34Zr52Nb14 alloy showed excellent corrosion resistance in PBS without any tendency for pitting at anodic potentials up to 1 Vsce. These preliminary advantages offer the opportunity to explore new orthopedic implant alloys based on Ti-Zr-Nb alloys. Moreover, this work provides an effective method for the parallel preparation of biomedical alloys.


high-throughput biomedical materials co-sputtering physical mask Young’s modulus 


  1. 1.
    D. C. Ludwigson, Metal Eng. 5, 1 (1965).Google Scholar
  2. 2.
    M. Navarro, A. Michiardi, O. Castano, and J. A. Planell, J. R. Soc. Interface 5, 1137 (2008).CrossRefGoogle Scholar
  3. 3.
    R. M. Pilliar, Metallic Biomaterials (Springer, New York, 2009), p. 41.Google Scholar
  4. 4.
    M. Geetha, A. K. Singh, R. Asokamani, and A. K. Gogia, Prog. Mater. Sci. 54, 397 (2009).CrossRefGoogle Scholar
  5. 5.
    E. Eisenbarth, D. Velten, M. Müller, R. Thull, and J. Breme, Biomaterials 25, 5705 (2004).CrossRefGoogle Scholar
  6. 6.
    J. Fornell, E. Pellicer, N. Van Steenberge, S. González, A. Gebert, S. Surinach, M. D. Baró, and J. Sort, Mater. Sci. Eng.-A 559, 159 (2013).CrossRefGoogle Scholar
  7. 7.
    K. Y. Xie, Y. Wang, Y. Zhao, L. Chang, G. Wang, Z. Chen, Y. Cao, X. Liao, E. J. Lavernia, R. Z. Valiev, B. Sarrafpour, H. Zoellner, and S. P. Ringer, Mater. Sci. Eng.-C 33, 3530 (2013).CrossRefGoogle Scholar
  8. 8.
    J. Fornell, N. Van Steenberge, A. Varea, E. Rossinyol, E. Pellicer, S. Surinach, M. D. Baró, and J. Sort, J. Mech. Behav. Biomed. Mater. 4, 1709 (2011).CrossRefGoogle Scholar
  9. 9.
    N. Chen, X. Shi, R. Witte, K. S. Nakayama, K. Ohmura, H. Wu, A. Takeuchi, H. Hahn, M. Esashi, H. Gleiter, A. Inoue, and D. V. Louzguine, J. Mater. Chem. B 1, 2568 (2013).CrossRefGoogle Scholar
  10. 10.
    W. S. Lee, C. F. Lin, T. H. Chen, and H. H. Hwang, J. Mech. Behav. Biomed. Mater. 1, 336 (2008).CrossRefGoogle Scholar
  11. 11.
    D. Velten, K. Schenk-Meuser, V. Biehl, H. Duschner, and J. Breme, Z. Metallk. 94, 667 (2003).CrossRefGoogle Scholar
  12. 12.
    S. Tamilselvi, V. Raman, and N. Rajendran, Electrochim. Acta 52, 839 (2007).CrossRefGoogle Scholar
  13. 13.
    A. Guitar, G. Vigna, and M. I. Luppo, J. Mech. Behav. Biomed. Mater. 2, 156 (2009).CrossRefGoogle Scholar
  14. 14.
    M. Semlitsch, F. Staub, and H. Weber, Biomed. Tech/Biomed. Eng. 30, 334 (1985).CrossRefGoogle Scholar
  15. 15.
    M. V. Popa, I. Demetrescu, E. Vasilescu, P. Drob, A. S. Lopez, J. Mirza-Rosca, C. Vasilescu, and D. Ionita, Electrochim. Acta 49, 2113 (2004).CrossRefGoogle Scholar
  16. 16.
    S. P. Wang, and J. Xu, Mater. Sci. Eng.-C 73, 80 (2017).CrossRefGoogle Scholar
  17. 17.
    D. Q. Martins, W. R. Osório, M. E. P. Souza, R. Caram, and A. Garcia, Electrochim. Acta 53, 2809 (2008).CrossRefGoogle Scholar
  18. 18.
    M. Geetha, A. K. Singh, K. Muraleedharan, A. K. Gogia, and R. Asokamani, J. Alloys Compd. 329, 264 (2001).CrossRefGoogle Scholar
  19. 19.
    E. Bertrand, T. Gloriant, D. M. Gordin, E. Vasilescu, P. Drob, C. Vasilescu, and S. I. Drob, J. Mech. Behav. Biomed. Mater. 3, 559 (2010).CrossRefGoogle Scholar
  20. 20.
    R. Banerjee, S. Nag, J. Stechschulte, and H. L. Fraser, Biomaterials 25, 3413 (2004).CrossRefGoogle Scholar
  21. 21.
    Y. L. Hao, S. J. Li, S. Y. Sun, C. Y. Zheng, and R. Yang, Acta Biomater. 3, 277 (2007).CrossRefGoogle Scholar
  22. 22.
    J. J. Oak, D. V. Louzguine-Luzgin, and A. Inoue, J. Mater. Res. 22, 1346 (2007).ADSCrossRefGoogle Scholar
  23. 23.
    S. L. Zhu, X. M. Wang, F. X. Qin, and A. Inoue, Mater. Sci. Eng.-A 459, 233 (2007).CrossRefGoogle Scholar
  24. 24.
    Y. Liu, Y. M. Wang, H. F. Pang, Q. Zhao, and L. Liu, Acta Biomater. 9, 7043 (2013).CrossRefGoogle Scholar
  25. 25.
    J. W. Yeh, JOM 65, 1759 (2013).CrossRefGoogle Scholar
  26. 26.
    Y. D. Wu, Y. H. Cai, T. Wang, J. J. Si, J. Zhu, Y. D. Wang, and X. D. Hui, Mater. Lett. 130, 277 (2014).CrossRefGoogle Scholar
  27. 27.
    S. P. Wang, and J. Xu, Intermetallics 95, 59 (2018).CrossRefGoogle Scholar
  28. 28.
    Y. Zhang, X. H. Yan, J. Ma, Z. P. Lu, and Y. H. Zhao, J. Mater. Res. 33, 3330 (2018).ADSCrossRefGoogle Scholar
  29. 29.
    X. H. Yan, J. S. Li, W. R. Zhang, and Y. Zhang, Mater. Chem. Phys. 210, 12 (2017).CrossRefGoogle Scholar
  30. 30.
    Y. Zhang, Z. P. Lu, S. G. Ma, P. K. Liaw, Z. Tang, Y. Q. Cheng, and M. C. Gao, MRS Commun. 4, 57 (2014).ADSGoogle Scholar
  31. 31.
    International Organization for Standardization. Metallic Materials- Instrumented Indentation Test for Hardness and Materials Parameteres- Part 1: Test Method, BS EN ISO 14577-1: 2002 (2002).Google Scholar
  32. 32.
    J. Pelleg, L. Z. Zevin, S. Lungo, and N. Croitoru, Thin Solid Films 197, 117 (1991).ADSCrossRefGoogle Scholar
  33. 33.
    H. H. Yang, J. H. Je, and K. B. Lee, J. Mater. Sci. Lett. 14, 1635 (1995).CrossRefGoogle Scholar
  34. 34.
    L. J. Meng, and M. P. Santos, Surf. Coatings Tech. 90, 64 (1997).CrossRefGoogle Scholar
  35. 35.
    X. Yang, and Y. Zhang, Mater. Chem. Phys. 132, 233 (2012).CrossRefGoogle Scholar
  36. 36.
    S. Guo, C. Ng, J. Lu, and C. T. Liu, J. Appl. Phys. 109, 103505 (2011).ADSCrossRefGoogle Scholar
  37. 37.
    H. Hertz, J. Reine Angew. Math. 92, 156 (1881).Google Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Beijing Advanced Innovation Center of Materials Genome Engineering, State Key Laboratory for Advanced Metals and MaterialsUniversity of Science and Technology BeijingBeijingChina
  2. 2.College of Mechatronic and Control EngineeringShenzhen UniversityShenzhenChina

Personalised recommendations