High-throughput screening for biomedical applications in a Ti-Zr-Nb alloy system through masking co-sputtering
- 161 Downloads
- 1 Citations
Abstract
A method of co-sputtering deposition combined with physical masking was applied to the parallel preparation of a ternary Ti-Nb- Zr system alloy. Sixteen independent specimens with varying compositions were obtained. Their microstructure, phase structure, Young’s modulus, nanoindentation hardness, and electrochemical behavior in a phosphate buffer solution (PBS) were studied in detail. It was revealed that the Ti-Zr-Nb alloys possess a single BCC structure. As confirmed via nanoindentation tests, the Young’s modulus of the specimens ranged from 80.3 to 94.8 GPa and the nanoindentation hardness ranged from 3.6 to 5.0 GPa. By optimizing the composition of the specimens, the Ti34Zr52Nb14 alloy was made to possess the lowest modulus in this work (76.5 GPa). Moreover, the Ti34Zr52Nb14 alloy showed excellent corrosion resistance in PBS without any tendency for pitting at anodic potentials up to 1 Vsce. These preliminary advantages offer the opportunity to explore new orthopedic implant alloys based on Ti-Zr-Nb alloys. Moreover, this work provides an effective method for the parallel preparation of biomedical alloys.
Keywords
high-throughput biomedical materials co-sputtering physical mask Young’s modulusReferences
- 1.D. C. Ludwigson, Metal Eng. 5, 1 (1965).Google Scholar
- 2.M. Navarro, A. Michiardi, O. Castano, and J. A. Planell, J. R. Soc. Interface 5, 1137 (2008).CrossRefGoogle Scholar
- 3.R. M. Pilliar, Metallic Biomaterials (Springer, New York, 2009), p. 41.Google Scholar
- 4.M. Geetha, A. K. Singh, R. Asokamani, and A. K. Gogia, Prog. Mater. Sci. 54, 397 (2009).CrossRefGoogle Scholar
- 5.E. Eisenbarth, D. Velten, M. Müller, R. Thull, and J. Breme, Biomaterials 25, 5705 (2004).CrossRefGoogle Scholar
- 6.J. Fornell, E. Pellicer, N. Van Steenberge, S. González, A. Gebert, S. Surinach, M. D. Baró, and J. Sort, Mater. Sci. Eng.-A 559, 159 (2013).CrossRefGoogle Scholar
- 7.K. Y. Xie, Y. Wang, Y. Zhao, L. Chang, G. Wang, Z. Chen, Y. Cao, X. Liao, E. J. Lavernia, R. Z. Valiev, B. Sarrafpour, H. Zoellner, and S. P. Ringer, Mater. Sci. Eng.-C 33, 3530 (2013).CrossRefGoogle Scholar
- 8.J. Fornell, N. Van Steenberge, A. Varea, E. Rossinyol, E. Pellicer, S. Surinach, M. D. Baró, and J. Sort, J. Mech. Behav. Biomed. Mater. 4, 1709 (2011).CrossRefGoogle Scholar
- 9.N. Chen, X. Shi, R. Witte, K. S. Nakayama, K. Ohmura, H. Wu, A. Takeuchi, H. Hahn, M. Esashi, H. Gleiter, A. Inoue, and D. V. Louzguine, J. Mater. Chem. B 1, 2568 (2013).CrossRefGoogle Scholar
- 10.W. S. Lee, C. F. Lin, T. H. Chen, and H. H. Hwang, J. Mech. Behav. Biomed. Mater. 1, 336 (2008).CrossRefGoogle Scholar
- 11.D. Velten, K. Schenk-Meuser, V. Biehl, H. Duschner, and J. Breme, Z. Metallk. 94, 667 (2003).CrossRefGoogle Scholar
- 12.S. Tamilselvi, V. Raman, and N. Rajendran, Electrochim. Acta 52, 839 (2007).CrossRefGoogle Scholar
- 13.A. Guitar, G. Vigna, and M. I. Luppo, J. Mech. Behav. Biomed. Mater. 2, 156 (2009).CrossRefGoogle Scholar
- 14.M. Semlitsch, F. Staub, and H. Weber, Biomed. Tech/Biomed. Eng. 30, 334 (1985).CrossRefGoogle Scholar
- 15.M. V. Popa, I. Demetrescu, E. Vasilescu, P. Drob, A. S. Lopez, J. Mirza-Rosca, C. Vasilescu, and D. Ionita, Electrochim. Acta 49, 2113 (2004).CrossRefGoogle Scholar
- 16.S. P. Wang, and J. Xu, Mater. Sci. Eng.-C 73, 80 (2017).CrossRefGoogle Scholar
- 17.D. Q. Martins, W. R. Osório, M. E. P. Souza, R. Caram, and A. Garcia, Electrochim. Acta 53, 2809 (2008).CrossRefGoogle Scholar
- 18.M. Geetha, A. K. Singh, K. Muraleedharan, A. K. Gogia, and R. Asokamani, J. Alloys Compd. 329, 264 (2001).CrossRefGoogle Scholar
- 19.E. Bertrand, T. Gloriant, D. M. Gordin, E. Vasilescu, P. Drob, C. Vasilescu, and S. I. Drob, J. Mech. Behav. Biomed. Mater. 3, 559 (2010).CrossRefGoogle Scholar
- 20.R. Banerjee, S. Nag, J. Stechschulte, and H. L. Fraser, Biomaterials 25, 3413 (2004).CrossRefGoogle Scholar
- 21.Y. L. Hao, S. J. Li, S. Y. Sun, C. Y. Zheng, and R. Yang, Acta Biomater. 3, 277 (2007).CrossRefGoogle Scholar
- 22.J. J. Oak, D. V. Louzguine-Luzgin, and A. Inoue, J. Mater. Res. 22, 1346 (2007).ADSCrossRefGoogle Scholar
- 23.S. L. Zhu, X. M. Wang, F. X. Qin, and A. Inoue, Mater. Sci. Eng.-A 459, 233 (2007).CrossRefGoogle Scholar
- 24.Y. Liu, Y. M. Wang, H. F. Pang, Q. Zhao, and L. Liu, Acta Biomater. 9, 7043 (2013).CrossRefGoogle Scholar
- 25.J. W. Yeh, JOM 65, 1759 (2013).CrossRefGoogle Scholar
- 26.Y. D. Wu, Y. H. Cai, T. Wang, J. J. Si, J. Zhu, Y. D. Wang, and X. D. Hui, Mater. Lett. 130, 277 (2014).CrossRefGoogle Scholar
- 27.S. P. Wang, and J. Xu, Intermetallics 95, 59 (2018).CrossRefGoogle Scholar
- 28.Y. Zhang, X. H. Yan, J. Ma, Z. P. Lu, and Y. H. Zhao, J. Mater. Res. 33, 3330 (2018).ADSCrossRefGoogle Scholar
- 29.X. H. Yan, J. S. Li, W. R. Zhang, and Y. Zhang, Mater. Chem. Phys. 210, 12 (2017).CrossRefGoogle Scholar
- 30.Y. Zhang, Z. P. Lu, S. G. Ma, P. K. Liaw, Z. Tang, Y. Q. Cheng, and M. C. Gao, MRS Commun. 4, 57 (2014).ADSGoogle Scholar
- 31.International Organization for Standardization. Metallic Materials- Instrumented Indentation Test for Hardness and Materials Parameteres- Part 1: Test Method, BS EN ISO 14577-1: 2002 (2002).Google Scholar
- 32.J. Pelleg, L. Z. Zevin, S. Lungo, and N. Croitoru, Thin Solid Films 197, 117 (1991).ADSCrossRefGoogle Scholar
- 33.H. H. Yang, J. H. Je, and K. B. Lee, J. Mater. Sci. Lett. 14, 1635 (1995).CrossRefGoogle Scholar
- 34.L. J. Meng, and M. P. Santos, Surf. Coatings Tech. 90, 64 (1997).CrossRefGoogle Scholar
- 35.X. Yang, and Y. Zhang, Mater. Chem. Phys. 132, 233 (2012).CrossRefGoogle Scholar
- 36.S. Guo, C. Ng, J. Lu, and C. T. Liu, J. Appl. Phys. 109, 103505 (2011).ADSCrossRefGoogle Scholar
- 37.H. Hertz, J. Reine Angew. Math. 92, 156 (1881).Google Scholar