Advertisement

Non-equilibrium steady structures of confined liquid crystals driven by a dynamic boundary

Abstract

Steady structures originating from dynamic self-assembly have begun to show their advantages in new generation materials, and pose challenges to equilibrium self-assembly. In view of the important role of confinement in self-assembly, here, we propose a new type of confinement leading to dynamic steady structures, which opens a new window for the conventional confinement. In our model, we consider the self-assembly of ellipsoids in 2D circular confinement via the boundary performing periodically stretching and contracting oscillation. Langevin dynamics simulations reveal the achievement of non-equilibrium steady structures under appropriate boundary motions, which are novel smectic structures with stable topological defects. Different from the confinement with a static boundary, ellipsoids close to the boundary have variable orientations depending on the boundary motion. Order-order structural transitions, accompanied by the symmetry change and varied defect number, occur with the change of oscillating amplitude and/or frequency of the boundary. Slow and fast dynamics are distinguished according to whether structural rearrangements and energetic adjustment happen or not. The collective motion of confined ellipsoids, aroused by the work performed on the system, is the key factor determining both the structure and dynamics of the self-assembly. Our results not only achieve novel textures of circular confined liquid crystals, but also inspire us to reconsider the self-assembly within the living organisms.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

References

  1. 1

    E. V. Shevchenko, D. V. Talapin, N. A. Kotov, S. O’Brien, and C. B. Murray, Nature 439, 55 (2006).

  2. 2

    O. D. Velev, and S. Gupta, Adv. Mater. 21, 1897 (2009).

  3. 3

    G. Singh, H. Chan, A. Baskin, E. Gelman, N. Repnin, P. Král, and R. Klajn, Science 345, 1149 (2014).

  4. 4

    S. C. Glotzer, Chem. Eng. Sci. 121, 3 (2015).

  5. 5

    I. Williams, E. C. Oğuz, T. Speck, P. Bartlett, H. Löwen, and C. P. Royall, Nat. Phys. 12, 98 (2016), arXiv: 1806.03984.

  6. 6

    B. A. Grzybowski, H. A. Stone, and G. M. Whitesides, Nature 405, 1033 (2000).

  7. 7

    J. E. Martin, and A. Snezhko, Rep. Prog. Phys. 76, 126601 (2013).

  8. 8

    H. Löwen, J. Phys.-Condens. Matter 20, 404201 (2008).

  9. 9

    J. Palacci, S. Sacanna, A. P. Steinberg, D. J. Pine, and P. M. Chaikin, Science 339, 936 (2013).

  10. 10

    F. J. Ndlec, T. Surrey, A. C. Maggs, and S. Leibler, Nature 389, 305 (1997).

  11. 11

    M. Tagliazucchi, E. A. Weiss, and I. Szleifer, Proc. Natl. Acad. Sci. 111, 9751 (2014).

  12. 12

    T. Lopez-Leon, V. Koning, K. B. S. Devaiah, V. Vitelli, and A. Fernandez-Nieves, Nat. Phys. 7, 391 (2011).

  13. 13

    I. H. Lin, D. S. Miller, P. J. Bertics, C. J. Murphy, J. J. de Pablo, and N. L. Abbott, Science 332, 1297 (2011).

  14. 14

    I. C. Gârlea, P. Mulder, J. Alvarado, O. Dammone, D. G. A. L. Aarts, M. P. Lettinga, G. H. Koenderink, and B. M. Mulder, Nat. Commun. 7, 12112 (2016).

  15. 15

    P. Poulin, H. Stark, T. C. Lubensky, and D. A. Weitz, Science 275, 1770 (1997).

  16. 16

    M. Zapotocky, L. Ramos, P. Poulin, T. C. Lubensky, and D. A. Weitz, Science 283, 209 (1999).

  17. 17

    I. Musevic, M. Škarabot, U. Tkalec, M. Ravnik, and S. Žumer, Science 313, 954 (2006).

  18. 18

    T. Araki, M. Buscaglia, T. Bellini, and H. Tanaka, Nat. Mater. 10, 303 (2011).

  19. 19

    O. D. Lavrentovich, I. Lazo, and O. P. Pishnyak, Nature 467, 947 (2010), arXiv: 1101.3947.

  20. 20

    O. P. Pishnyak, S. V. Shiyanovskii, and O. D. Lavrentovich, Phys. Rev. Lett. 106, 047801 (2011), arXiv: 1101.0185.

  21. 21

    T. Gibaud, E. Barry, M. J. Zakhary, M. Henglin, A. Ward, Y. Yang, C. Berciu, R. Oldenbourg, M. F. Hagan, D. Nicastro, R. B. Meyer, and Z. Dogic, Nature 481, 348 (2012).

  22. 22

    O. J. Dammone, I. Zacharoudiou, R. P. A. Dullens, J. M. Yeomans, M. P. Lettinga, and D. G. A. L. Aarts, Phys. Rev. Lett. 109, 108303 (2012).

  23. 23

    O. V. Manyuhina, K. B. Lawlor, M. C. Marchetti, and M. J. Bowick, Soft Matter 11, 6099 (2015), arXiv: 1503.06380.

  24. 24

    M. J. Press, and A. S. Arrott, Phys. Rev. Lett. 33, 403 (1974).

  25. 25

    K. Nayani, R. Chang, J. Fu, P. W. Ellis, A. Fernandez-Nieves, J. O. Park, and M. Srinivasarao, Nat. Commun. 6, 8067 (2015).

  26. 26

    K. J. Stebe, E. Lewandowski, and M. Ghosh, Science 325, 159 (2009).

  27. 27

    M. Spellings, M. Engel, D. Klotsa, S. Sabrina, A. M. Drews, N. H. P. Nguyen, K. J. M. Bishop, and S. C. Glotzer, Proc. Natl. Acad. Sci. 112, E4642 (2015).

  28. 28

    J. A. Speir, and J. E. Johnson, Curr. Opin. Struct. Biol. 22, 65 (2012).

  29. 29

    X. Shi, and Y. Ma, Nat. Commun. 4, 3013 (2013).

  30. 30

    J. Zhang, and A. Libchaber, Phys. Rev. Lett. 84, 4361 (2000).

  31. 31

    G. Straßburger, and I. Rehberg, Phys. Rev. E 62, 2517 (2000).

  32. 32

    S. Aumaître, T. Schnautz, C. A. Kruelle, and I. Rehberg, Phys. Rev. Lett. 90, 114302 (2003).

  33. 33

    F. Schneider, Bull. Math. Biol. 49, 772 (1987).

  34. 34

    E. Karsenti, Nat. Rev. Mol. Cell Biol. 9, 255 (2008).

  35. 35

    J. A. Moreno-Razo, E. J. Sambriski, G. M. Koenig, E. Dîaz-Herrera, N. L. Abbott, and J. J. de Pablo, Soft Matter 7, 6828 (2011).

  36. 36

    J. A. Moreno-Razo, E. J. Sambriski, N. L. Abbott, J. P. Hernández-Ortiz, and J. J. de Pablo, Nature 485, 86 (2012).

  37. 37

    Q. Ji, R. Lefort, R. Busselez, and D. Morineau, J. Chem. Phys. 130, 234501 (2009).

  38. 38

    M. A. Bates, and G. R. Luckhurst, J. Chem. Phys. 110, 7087 (1999).

  39. 39

    R. Berardi, A. Costantini, L. Muccioli, S. Orlandi, and C. Zannoni, J. Chem. Phys. 126, 044905 (2007).

  40. 40

    Z. Zheng, R. Ni, F. Wang, M. Dijkstra, Y. Wang, and Y. Han, Nat. Commun. 5, 3829 (2014).

  41. 41

    P. G. de Gennes, and J. Prost, The Physics of Liquid Crystals, 2nd ed. (Oxford University Press, Oxford, 2003).

  42. 42

    G. Duclos, C. Erlenkämper, J. F. Joanny, and P. Silberzan, Nat. Phys. 13, 58 (2016).

  43. 43

    J. Dzubiella, M. Schmidt, and H. Löwen, Phys. Rev. E 62, 5081 (2000).

  44. 44

    M. Rein, N. Heinß, F. Schmid, and T. Speck, Phys. Rev. Lett. 116, 058102 (2016), arXiv: 1601.01512.

  45. 45

    G. R. Luckhurst, and P. S. J. Simmonds, Mol. Phys. 80, 233 (1993).

  46. 46

    S. Plimpton, J. Comput. Phys. 117, 1 (1995).

  47. 47

    W. D. Tian, Y. Gu, Y. K. Guo, and K. Chen, Chin. Phys. B 26, 100502 (2017), arXiv: 1511.08573.

Download references

Author information

Correspondence to ChunLai Ren or YuQiang Ma.

Electronic supplementary material

Supplementary material, approximately 4.33 MB.

Supplementary material, approximately 4.33 MB.

Supplementary material, approximately 4.26 MB.

Supplementary material, approximately 4.26 MB.

Supplementary material, approximately 3.67 MB.

Supplementary material, approximately 3.67 MB.

Supplementary material, approximately 2.69 MB.

Supplementary material, approximately 2.69 MB.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, R., Ren, C., Feng, J. et al. Non-equilibrium steady structures of confined liquid crystals driven by a dynamic boundary. Sci. China Phys. Mech. Astron. 62, 117012 (2019). https://doi.org/10.1007/s11433-019-9386-2

Download citation

Keywords

  • dynamic self-assembly
  • confined liquid crystals
  • steady structure
  • collective motion
  • Langevin dynamics simulation