Advertisement

Theory for frequent measurements of spontaneous emissions in a non-Markovian environment: Beyond the Lorentzian spectrum

  • Luting Xu
  • Xin-Qi LiEmail author
Article
  • 7 Downloads

Abstract

The measurement-result-conditioned evolution of a system (e.g., an atom) with spontaneous emissions of photons is described by the quantum trajectory (QT) theory. In this work we generalize the associated QT theory from an infinitely wide bandwidth Markovian environment to the finite bandwidth non-Markovian environment. In particular, we generalize the treatment for an arbitrary spectrum, which is not restricted by the specific Lorentzian case. We rigorously prove the general existence of a perfect scaling behavior jointly defined by the bandwidth of the environment and the time interval between successive photon detections. For a couple of examples, we obtain analytic results to facilitate the QT simulations based on the Monte-Carlo algorithm. For the case where the analytical result is not available, a numerical scheme is proposed for practical simulations.

Keywords

quantum measurement quantum trajectory Zeno effect non-Markovian environment 

References

  1. 1.
    M. A. Nielsen, and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000).zbMATHGoogle Scholar
  2. 2.
    H. M. Wiseman, and G. J. Milburn, Quantum Measurement and Control (Cambridge University Press, Cambridge, 2009).CrossRefzbMATHGoogle Scholar
  3. 3.
    K. Jacobs, Quantum Measurement Theory and Its Applications (Cambridge University Press, Cambridge, 2014).CrossRefGoogle Scholar
  4. 4.
    J. Dalibard, Y. Castin, and K. Mølmer, Phys. Rev. Lett. 68, 580 (1992).ADSCrossRefGoogle Scholar
  5. 5.
    H. M. Wiseman, and G. J. Milburn, Phys. Rev. A 47, 642 (1993).ADSCrossRefGoogle Scholar
  6. 6.
    A. Palacios-Laloy, F. Mallet, F. Nguyen, P. Bertet, D. Vion, D. Esteve, and A. N. Korotkov, Nat. Phys. 6, 442 (2010), arXiv: 1005.3435.CrossRefGoogle Scholar
  7. 7.
    J. P. Groen, D. Ristè, L. Tornberg, J. Cramer, P. C. de Groot, T. Picot, G. Johansson, and L. DiCarlo, Phys. Rev. Lett. 111, 090506 (2013), arXiv: 1302.5147.ADSCrossRefGoogle Scholar
  8. 8.
    A. J. Hoffman, S. J. Srinivasan, S. Schmidt, L. Spietz, J. Aumentado, H. E. Türeci, and A. A. Houck, Phys. Rev. Lett. 107, 053602 (2011), arXiv: 1008.5158.ADSCrossRefGoogle Scholar
  9. 9.
    M. Mariantoni, H. Wang, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley, A. D. O’Connell, D. Sank, M. Weides, J. Wenner, T. Yamamoto, Y. Yin, J. Zhao, J. M. Martinis, and A. N. Cleland, Nat. Phys. 7, 287 (2011), arXiv: 1011.3080.CrossRefGoogle Scholar
  10. 10.
    M. Hatridge, S. Shankar, M. Mirrahimi, F. Schackert, K. Geerlings, T. Brecht, K. M. Sliwa, B. Abdo, L. Frunzio, S. M. Girvin, R. J. Schoelkopf, and M. H. Devoret, Science 339, 178 (2013).ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    K. W. Murch, S. J. Weber, C. Macklin, and I. Siddiqi, Nature 502, 211 (2013), arXiv: 1305.7270.ADSCrossRefGoogle Scholar
  12. 12.
    R. Vijay, C. Macklin, D. H. Slichter, S. J. Weber, K.W. Murch, R. Naik, A. N. Korotkov, and I. Siddiqi, Nature 490, 77 (2012).ADSCrossRefGoogle Scholar
  13. 13.
    D. Ristè, J. G. van Leeuwen, H. S. Ku, K. W. Lehnert, and L. DiCarlo, Phys. Rev. Lett. 109, 050507 (2012).ADSCrossRefGoogle Scholar
  14. 14.
    P. Campagne-Ibarcq, E. Flurin, N. Roch, D. Darson, P. Morfin, M. Mirrahimi, M. H. Devoret, F. Mallet, and B. Huard, Phys. Rev. X 3, 021008 (2013).Google Scholar
  15. 15.
    L. Xu, and X. Q. Li, Phys. Rev. A 94, 032130 (2016), arXiv: 1412.7895.ADSCrossRefGoogle Scholar
  16. 16.
    L. Xu, Y. Cao, X. Q. Li, Y. J. Yan, and S. Gurvitz, Phys. Rev. A 90, 022108 (2014), arXiv: 1401.3159.ADSCrossRefGoogle Scholar
  17. 17.
    G. Kurizki, and A. G. Kofman, Nature 405, 546 (2000).ADSCrossRefGoogle Scholar
  18. 18.
    J. Ping, Y. Ye, L. Xu, X. Q. Li, Y. J. Yan, and S. Gurvitz, Phys. Lett. A 377, 676 (2013).ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    L. Xu, and X. Q. Li, Sci. Rep. 8, 531 (2018).ADSCrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Center for Joint Quantum Studies, School of ScienceTianjin UniversityTianjinChina

Personalised recommendations