Advertisement

CaPtAs: A new noncentrosymmetric superconductor

  • Wu Xie
  • PeiRan Zhang
  • Bin Shen
  • WenBing Jiang
  • GuiMing Pang
  • Tian Shang
  • Chao Cao
  • Michael SmidmanEmail author
  • HuiQiu YuanEmail author
Article
  • 4 Downloads

Abstract

We report the discovery of a new noncentrosymmetric superconductor CaPtAs. It crystallizes in a tetragonal structure (space group I41md, No. 109), featuring three dimensional honeycomb networks of Pt-As and a much elongated c-axis (a = b = 4.18 Å, and c = 43.70 Å). The superconductivity of CaPtAs with Tc = 1.47 K was characterized by means of electrical resistivity, specific heat, and ac magnetic susceptibility. The electronic specific heat Ce(T)/T shows evidence for a deviation from the behavior of a conventional BCS superconductor, and can be reasonably fitted by a p-wave model. The upper critical field μ0Hc2 of CaPtAs exhibits a moderate anisotropy, with an in-plane value of around 204 mT and an out-of-plane value of 148 mT. Density functional theory calculations indicate that the Pt-5d and As-4p orbitals mainly contribute to the density of states near the Fermi level, showing that the Pt-As honeycomb networks may significantly influence the superconducting properties.

Keywords

noncentrosymmetric superconductivity CaPtAs 

Notes

References

  1. 1.
    E. Bauer, G. Hilscher, H. Michor, C. Paul, E. W. Scheidt, A. Gribanov, Y. Seropegin, H. Noël, M. Sigrist, and P. Rogl, Phys. Rev. Lett. 92, 027003 (2004).ADSCrossRefGoogle Scholar
  2. 2.
    M. Smidman, M. B. Salamon, H. Q. Yuan, and D. F. Agterberg, Rep. Prog. Phys. 80, 036501 (2017).ADSCrossRefGoogle Scholar
  3. 3.
    T. Kawai, H. Muranaka, M. A. Measson, T. Shimoda, Y. Doi, T. D. Matsuda, Y. Haga, G. Knebel, G. Lapertot, D. Aoki, J. Flouquet, T. Takeuchi, R. Settai, and Y. Ōnuki, J. Phys. Soc. Jpn. 77, 064716 (2008).ADSCrossRefGoogle Scholar
  4. 4.
    Y. Muro, D. Eom, N. Takeda, and M. Ishikawa, J. Phys. Soc. Jpn. 67, 3601 (1998).ADSCrossRefGoogle Scholar
  5. 5.
    Q. Liu, B. Shen, M. Smidman, R. Li, Z. Y. Nie, X. Y. Xiao, Y. Chen, H. Lee, and H. Q. Yuan, Sci. China-Phys. Mech. Astron. 61, 077411 (2018).ADSCrossRefGoogle Scholar
  6. 6.
    X. B. Xia, B. Shen, M. Smidman, Y. Chen, H. Lee, and H. Q. Yuan, Chin. Phys. Lett. 35, 067102 (2018).ADSCrossRefGoogle Scholar
  7. 7.
    N. Kimura, K. Ito, K. Saitoh, Y. Umeda, H. Aoki, and T. Terashima, Phys. Rev. Lett. 95, 247004 (2005).ADSCrossRefGoogle Scholar
  8. 8.
    I. Sugitani, Y. Okuda, H. Shishido, T. Yamada, A. Thamizhavel, E. Yamamoto, T. D. Matsuda, Y. Haga, T. Takeuchi, R. Settai, and Y. Ōnuki, J. Phys. Soc. Jpn. 75, 043703 (2006).ADSCrossRefGoogle Scholar
  9. 9.
    H. Wang, J. Guo, E. D. Bauer, V. A. Sidorov, H. Zhao, J. Zhang, Y. Zhou, Z. Wang, S. Cai, K. Yang, A. Li, X. Li, Y. Li, P. Sun, Y. Yang, Q. Wu, T. Xiang, J. D. Thompson, and L. Sun, Phys. Rev. B 97, 064514 (2018).ADSCrossRefGoogle Scholar
  10. 10.
    H. Q. Yuan, D. F. Agterberg, N. Hayashi, P. Badica, D. Vandervelde, K. Togano, M. Sigrist, and M. B. Salamon, Phys. Rev. Lett. 97, 017006 (2006).ADSCrossRefGoogle Scholar
  11. 11.
    M. Nishiyama, Y. Inada, and G. Zheng, Phys. Rev. Lett. 98, 047002 (2007).ADSCrossRefGoogle Scholar
  12. 12.
    H. Kim, K. Wang, Y. Nakajima, R. Hu, S. Ziemak, P. Syers, L. Wang, H. Hodovanets, J. D. Denlinger, P. M. R. Brydon, D. F. Agterberg, M. A. Tanatar, R. Prozorov, and J. Paglione, Sci. Adv. 4, eaao4513 (2018).ADSCrossRefGoogle Scholar
  13. 13.
    Z. Sun, M. Enayat, A. Maldonado, C. Lithgow, E. Yelland, D. C. Peets, A. Yaresko, A. P. Schnyder, and P. Wahl, Nat. Commun. 6, 6633 (2015).ADSCrossRefGoogle Scholar
  14. 14.
    M. N. Ali, Q. D. Gibson, T. Klimczuk, and R. J. Cava, Phys. Rev. B 89, 020505 (2014).ADSCrossRefGoogle Scholar
  15. 15.
    A. D. Hillier, J. Quintanilla, and R. Cywinski, Phys. Rev. Lett. 102, 117007 (2009).ADSCrossRefGoogle Scholar
  16. 16.
    J. A. T. Barker, D. Singh, A. Thamizhavel, A. D. Hillier, M. R. Lees, G. Balakrishnan, D. M. K. Paul, and R. P. Singh, Phys. Rev. Lett. 115, 267001 (2015).ADSCrossRefGoogle Scholar
  17. 17.
    T. Shang, S. K. Ghosh, L. J. Chang, C. Baines, M. K. Lee, J. Z. Zhao, J. A. T. Verezhak, D. J. Gawryluk, E. Pomjakushina, M. Shi, M. Medarde, J. Mesot, J. Quintanilla, and T. Shiroka, arXiv: 1901.01414.Google Scholar
  18. 18.
    D. Singh, K. P. Sajilesh, J. A. T. Barker, D. M. K. Paul, A. D. Hillier, and R. P. Singh, Phys. Rev. B 97, 100505(R) (2018).ADSCrossRefGoogle Scholar
  19. 19.
    R. P. Singh, A. D. Hillier, B. Mazidian, J. Quintanilla, J. F. Annett, D. M. K. Paul, G. Balakrishnan, and M. R. Lees, Phys. Rev. Lett. 112, 107002 (2014).ADSCrossRefGoogle Scholar
  20. 20.
    T. Shang, M. Smidman, S. K. Ghosh, C. Baines, L. J. Chang, D. J. Gawryluk, J. A. T. Barker, R. P. Singh, D. M. K. Paul, G. Balakrishnan, E. Pomjakushina, M. Shi, M. Medarde, A. D. Hillier, H. Q. Yuan, J. Quintanilla, J. Mesot, and T. Shiroka, Phys. Rev. Lett. 121, 257002 (2018).ADSCrossRefGoogle Scholar
  21. 21.
    T. Shang, G. M. Pang, C. Baines, W. B. Jiang, W. Xie, A. Wang, M. Medarde, E. Pomjakushina, M. Shi, J. Mesot, H. Q. Yuan, and T. Shiroka, Phys. Rev. B 97, 020502 (2018).ADSCrossRefGoogle Scholar
  22. 22.
    G. M. Luke, Y. Fudamoto, K. M. Kojima, M. I. Larkin, J. Merrin, B. Nachumi, Y. J. Uemura, Y. Maeno, Z. Q. Mao, Y. Mori, H. Nakamura, and M. Sigrist, Nature 394, 558 (1998).ADSCrossRefGoogle Scholar
  23. 23.
    I. Bonalde, B. D. Yanoff, M. B. Salamon, D. J. Van Harlingen, E. M. E. Chia, Z. Q. Mao, and Y. Maeno, Phys. Rev. Lett. 85, 4775 (2000).ADSCrossRefGoogle Scholar
  24. 24.
    K. Deguchi, Z. Q. Mao, H. Yaguchi, and Y. Maeno, Phys. Rev. Lett. 92, 047002 (2004).ADSCrossRefGoogle Scholar
  25. 25.
    G. M. Luke, A. Keren, L. P. Le, W. D. Wu, Y. J. Uemura, D. A. Bonn, L. Taillefer, and J. D. Garrett, Phys. Rev. Lett. 71, 1466 (1993).ADSCrossRefGoogle Scholar
  26. 26.
    Y. Kohori, T. Kohara, H. Shibai, Y. Oda, Y. Kitaoka, and K. Asayama, J. Phys. Soc. Jpn. 57, 395 (1988).ADSCrossRefGoogle Scholar
  27. 27.
    J. Chen, L. Jiao, J. L. Zhang, Y. Chen, L. Yang, M. Nicklas, F. Steglich, and H. Q. Yuan, New J. Phys. 15, 053005 (2013).ADSCrossRefGoogle Scholar
  28. 28.
    G. M. Pang, Z. Y. Nie, A. Wang, D. Singh, W. Xie, W. B. Jiang, Y. Chen, R. P. Singh, M. Smidman, and H. Q. Yuan, Phys. Rev. B 97, 224506 (2018).ADSCrossRefGoogle Scholar
  29. 29.
    J. Chen, L. Jiao, J. L. Zhang, Y. Chen, L. Yang, M. Nicklas, F. Steglich, and H. Q. Yuan, Phys. Rev. B 88, 144510 (2013).ADSCrossRefGoogle Scholar
  30. 30.
    Y. Nishikubo, K. Kudo, and M. Nohara, J. Phys. Soc. Jpn. 80, 055002 (2011).ADSCrossRefGoogle Scholar
  31. 31.
    G. Wenski, and A. Mewis, Z. Anorg. Allg. Chem. 535, 110 (1986).CrossRefGoogle Scholar
  32. 32.
    J. Goryo, M. H. Fischer, and M. Sigrist, Phys. Rev. B 86, 100507 (2012).ADSCrossRefGoogle Scholar
  33. 33.
    S. J. Youn, M. H. Fischer, S. H. Rhim, M. Sigrist, and D. F. Agterberg, Phys. Rev. B 85, 220505 (2012).ADSCrossRefGoogle Scholar
  34. 34.
    P. K. Biswas, H. Luetkens, T. Neupert, T. Stürzer, C. Baines, G. Pascua, A. P. Schnyder, M. H. Fischer, J. Goryo, M. R. Lees, H. Maeter, F. Brückner, H. H. Klauss, M. Nicklas, P. J. Baker, A. D. Hillier, M. Sigrist, A. Amato, and D. Johrendt, Phys. Rev. B 87, 180503 (2013).ADSCrossRefGoogle Scholar
  35. 35.
    M. H. Fischer, T. Neupert, C. Platt, A. P. Schnyder, W. Hanke, J. Goryo, R. Thomale, and M. Sigrist, Phys. Rev. B 89, 020509 (2014).ADSCrossRefGoogle Scholar
  36. 36.
    K. Kudo, T. Takeuchi, H. Ota, Y. Saito, S. Ayukawa, K. Fujimura, and M. Nohara, J. Phys. Soc. Jpn. 87, 073708 (2018).ADSCrossRefGoogle Scholar
  37. 37.
    K. Kudo, Y. Saito, T. Takeuchi, S. Ayukawa, T. Kawamata, S. Nakamura, Y. Koike, and M. Nohara, J. Phys. Soc. Jpn. 87, 063702 (2018).ADSCrossRefGoogle Scholar
  38. 38.
    G. Wenski, and A. Mewis, Z. Anorg. Allg. Chem. 543, 49 (1986).CrossRefGoogle Scholar
  39. 39.
    C. Kittel, Introduction to Solid State Physics, 8th ed. (John Wiley and Sons, Hoboken, NJ, 2005).zbMATHGoogle Scholar
  40. 40.
    W. L. McMillan, Phys. Rev. 167, 331 (1968).ADSCrossRefGoogle Scholar
  41. 41.
    F. Bouquet, Y. Wang, R. A. Fisher, D. G. Hinks, J. D. Jorgensen, A. Junod, and N. E. Phillips, Europhys. Lett. 56, 856 (2001).ADSCrossRefGoogle Scholar
  42. 42.
    H. Okamoto, H. Taniguti, and Y. Ishihara, Phys. Rev. B 53, 384 (1996).ADSCrossRefGoogle Scholar
  43. 43.
    M. Tinkham, Introduction to Superconductivity, 2nd ed. (Dover Publications, Mineola, NY, 1996).Google Scholar
  44. 44.
    H. Padamsee, J. E. Neighbor, and C. A. Shiffman, J. Low Temp. Phys. 12, 387 (1973).ADSCrossRefGoogle Scholar
  45. 45.
    H. Leng, C. Paulsen, Y. K. Huang, and A. de Visser, Phys. Rev. B 96, 220506 (2017).ADSCrossRefGoogle Scholar
  46. 46.
    T. Le, L. Yin, Z. Feng, Q. Huang, L. Che, J. Li, Y. Shi, and X. Lu, Phys. Rev. B 99, 180504 (2019).ADSCrossRefGoogle Scholar
  47. 47.
    C. L. Zhang, Z. Yuan, G. Bian, S. Y. Xu, X. Zhang, M. Z. Hasan, and S. Jia, Phys. Rev. B 93, 054520 (2016).ADSCrossRefGoogle Scholar
  48. 48.
    T. Le, Y. Sun, H.-K. Jin, L. Q. Che, L. C. Yin, J. Li, G. M. Pang, C. Q. Xu, L. X. Zhao, S. Kittaka, T. Sakakibara, K. Machida, R. Sankar, H. Q. Yuan, G. F. Chen, X. F. Xu, S. Y. Li, Y. Zhou, and X. Lu, arXiv: 1905.11177.Google Scholar
  49. 49.
    X. Zhu, H. Yang, L. Fang, G. Mu, and H. H. Wen, Supercond. Sci. Technol. 21, 105001 (2008).ADSCrossRefGoogle Scholar
  50. 50.
    N. R. Werthamer, E. Helfand, and P. C. Hohenberg, Phys. Rev. 147, 295 (1966).ADSCrossRefGoogle Scholar
  51. 51.
    A. M. Clogston, Phys. Rev. Lett. 9, 266 (1962).ADSCrossRefGoogle Scholar
  52. 52.
    T. P. Orlando, E. J. McNiff, S. Foner, and M. R. Beasley, Phys. Rev. B 19, 4545 (1979).ADSCrossRefGoogle Scholar
  53. 53.
    Y. Qi, J. Guo, H. Lei, Z. Xiao, T. Kamiya, and H. Hosono, Phys. Rev. B 89, 024517 (2014).ADSCrossRefGoogle Scholar
  54. 54.
    K. Kudo, K. Fujimura, S. Onari, H. Ota, and M. Nohara, Phys. Rev. B 91, 174514 (2015).ADSCrossRefGoogle Scholar
  55. 55.
    H. Y. Uzunok, H. M. Tütüncü, E. Karaca, and G. P. Srivastava, Intermetallics 108, 109 (2019).CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  • Wu Xie
    • 1
  • PeiRan Zhang
    • 1
  • Bin Shen
    • 1
  • WenBing Jiang
    • 1
  • GuiMing Pang
    • 1
  • Tian Shang
    • 2
  • Chao Cao
    • 3
  • Michael Smidman
    • 1
    Email author
  • HuiQiu Yuan
    • 1
    • 4
    Email author
  1. 1.Center for Correlated Matter and Department of PhysicsZhejiang UniversityHangzhouChina
  2. 2.Physik-InstitutUniversität ZürichZürichSwitzerland
  3. 3.Department of PhysicsHangzhou Normal UniversityHangzhouChina
  4. 4.Collaborative Innovation Center of Advanced MicrostructuresNanjing UniversityNanjingChina

Personalised recommendations