Advertisement

Broadband transmission-type 1-bit coding metasurface for electromagnetic beam forming and scanning

Abstract

Coding metasurfaces make it possible to manipulate electromagnetic (EM) waves digitally by means of several discrete particles. Hence, there have been rapid advances in this field recently. Here we propose a novel design of a broadband transmission-type coding metasurface, which is valid to both x- and y-polarized EM incidences from 8.1–12.5 GHz while satisfies the requirements of 1-bit coding without changing the polarization. Two types of multi-layer coding particles with different geometrical parameters are adopted to represent the digital states “0” and “1”, which are easily promoted to terahertz and optics through modifying the size scale. To verify the ability to manipulate the EM waves, we first adopt the coding metasurface to achieve broadband beam forming by converting spherical waves to plane waves and realize high-directivity pencil beam in far field with low side lobes. We further arrange the particles according to the coding sequence 010101… to steer two symmetrical beams in different directions controlled by frequencies with the maximum range of the scanning angle of 30°-50.5°. The good agreements between the simulated and measured results validate the proposed broadband coding metasurface, indicating its huge potential in communication and radar imaging systems.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

References

  1. 1

    D. Sievenpiper, L. J. Zhang, R. F. J. Broas, N. G. Alexopolous, and E. Yablonovitch, IEEE Trans. Microwave Theor. Techn. 47, 2059 (1999).

  2. 2

    E. F. Kuester, M. A. Mohamed, M. Piket-May, and C. L. Holloway, IEEE Trans. Antennas Propagat. 51, 2641 (2003).

  3. 3

    R. E. Collin, Field Theory of Guided Waves (McGraw-Hill, New York, 1960).

  4. 4

    N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, Science 334, 333 (2011).

  5. 5

    C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O’Hara, J. Booth, and D. R. Smith, IEEE Antennas Propag. Mag. 54, 10 (2012).

  6. 6

    H. T. Chen, A. J. Taylor, and N. Yu, Rep. Prog. Phys. 79, 076401 (2016).

  7. 7

    H. F. Ma, G. Z. Wang, G. S. Kong, and T. J. Cui, Opt. Mater. Express 4, 1717 (2014).

  8. 8

    K. Chen, Y. Feng, F. Monticone, J. Zhao, B. Zhu, T. Jiang, L. Zhang, Y. Kim, X. Ding, S. Zhang, A. Alù, and C. W. Qiu, Adv. Mater. 29, 1606422 (2017).

  9. 9

    H. X. Xu, H. Liu, X. Ling, Y. Sun, and F. Yuan, IEEE Trans. Antennas Propagat. 65, 7378 (2017).

  10. 10

    H. X. Xu, G. Hu, L. Han, M. Jiang, Y. Huang, Y. Li, X. Yang, X. Ling, L. Chen, J. Zhao, and C. W. Qiu, Adv. Opt. Mater. 334, 1801479 (2018).

  11. 11

    H. X. Xu, G. Hu, Y. Li, L. Han, J. Zhao, Y. Sun, F. Yuan, G. M. Wang, Z. H. Jiang, X. Ling, T. J. Cui, and C. W. Qiu, Light Sci. Appl. 8, 3 (2019).

  12. 12

    S. Dong, Y. Zhang, H. Guo, J. Duan, F. Guan, Q. He, H. Zhao, L. Zhou, and S. Sun, Phys. Rev. Appl. 9, 014032 (2018).

  13. 13

    L. Liu, X. Zhang, M. Kenney, X. Su, N. Xu, C. Ouyang, Y. Shi, J. Han, W. Zhang, and S. Zhang, Adv. Mater. 26, 5031 (2014).

  14. 14

    Q. Wang, X. Zhang, Y. Xu, Z. Tian, J. Gu, W. Yue, S. Zhang, J. Han, and W. Zhang, Adv. Opt. Mater. 3, 779 (2015).

  15. 15

    L. Cong, Y. K. Srivastava, H. Zhang, X. Zhang, J. Han, and R. Singh, Light Sci. Appl. 7, 28 (2018).

  16. 16

    S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, Nat. Mater. 11, 426 (2012).

  17. 17

    S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, C. Hung Chu, J. W. Chen, S. H. Lu, J. Chen, B. Xu, C. H. Kuan, T. Li, S. Zhu, and D. P. Tsai, Nat. Commun. 8, 187 (2017).

  18. 18

    G. Hu, X. Hong, K. Wang, J. Wu, H. X. Xu, W. Zhao, W. Liu, S. Zhang, F. Garcia-Vidal, B. Wang, P. Lu, and C. W. Qiu, Nat. Photon. 13, 467 (2019).

  19. 19

    Y. Xie, W. Wang, H. Chen, A. Konneker, B. I. Popa, and S. A. Cummer, Nat. Commun. 5, 5553 (2014).

  20. 20

    H. Tang, Z. Chen, N. Tang, S. Li, Y. Shen, Y. Peng, X. Zhu, and J. Zang, Adv. Funct. Mater. 28, 1801127 (2018).

  21. 21

    T. J. Cui, M. Q. Qi, X. Wan, J. Zhao, and Q. Cheng, Light Sci. Appl. 3, e218 (2014).

  22. 22

    X. Wan, M. Q. Qi, T. Y. Chen, and T. J. Cui, Sci. Rep. 6, 20663 (2016).

  23. 23

    S. Liu, T. J. Cui, Q. Xu, D. Bao, L. Du, X. Wan, W. X. Tang, C. Ouyang, X. Y. Zhou, H. Yuan, H. F. Ma, W. X. Jiang, J. Han, W. Zhang, and Q. Cheng, Light Sci. Appl. 5, e16076 (2016).

  24. 24

    S. Liu, T. J. Cui, L. Zhang, Q. Xu, Q. Wang, X. Wan, J. Q. Gu, W. X. Tang, M. Qing Qi, J. G. Han, W. L. Zhang, X. Y. Zhou, and Q. Cheng, Adv. Sci. 3, 1600156 (2016).

  25. 25

    R. Y. Wu, C. B. Shi, S. Liu, W. Wu, and T. J. Cui, Adv. Opt. Mater. 6, 1701236 (2018).

  26. 26

    L. H. Gao, Q. Cheng, J. Yang, S. J. Ma, J. Zhao, S. Liu, H. B. Chen, Q. He, W. X. Jiang, H. F. Ma, Q. Y. Wen, L. J. Liang, B. B. Jin, W. W. Liu, L. Zhou, J. Q. Yao, P. H. Wu, and T. J. Cui, Light Sci. Appl. 4, e324 (2015).

  27. 27

    M. Moccia, S. Liu, R. Y. Wu, G. Castaldi, A. Andreone, T. J. Cui, and V. Galdi, Adv. Opt. Mater. 5, 1700455 (2017).

  28. 28

    S. Liu, A. Noor, L. L. Du, L. Zhang, Q. Xu, K. Luan, T. Q. Wang, Z. Tian, W. X. Tang, J. G. Han, W. L. Zhang, X. Y. Zhou, Q. Cheng, and T. J. Cui, ACS Photon. 3, 1968 (2016).

  29. 29

    T. J. Cui, R. Y. Wu, W. Wu, C. B. Shi, and Y. B. Li, J. Phys. D-Appl. Phys. 50, 404002 (2017).

  30. 30

    Q. Ma, C. B. Shi, G. D. Bai, T. Y. Chen, A. Noor, and T. J. Cui, Adv. Opt. Mater. 5, 1700548 (2017).

  31. 31

    T. J. Cui, S. Liu, and L. L. Li, Light Sci. Appl. 5, e16172 (2016).

  32. 32

    K. Chen, L. Cui, Y. Feng, J. Zhao, T. Jiang, and B. Zhu, Opt. Express 25, 5571 (2017).

  33. 33

    R. Y. Wu, L. Zhang, L. Bao, L. W. Wu, Q. Ma, G. D. Bai, H. T. Wu, and T. J. Cui, Adv. Opt. Mater. 7, 1801429 (2019).

  34. 34

    L. Li, T. J. Cui, W. Ji, S. Liu, J. Ding, X. Wan, Y. B. Li, M. Jiang, C. W. Qiu, and S. Zhang, Nat. Commun. 8, 197 (2017).

  35. 35

    L. Chen, Q. Ma, H. B. Jing, H. Y. Cui, Y. Liu, and T. J. Cui, Phys. Rev. Appl. 11, 054051 (2019).

  36. 36

    T. J. Cui, S. Liu, and L. Zhang, J. Mater. Chem. C 5, 3644 (2017).

  37. 37

    T. J. Cui, J. Opt. 19, 084004 (2017).

  38. 38

    T. J. Cui, Natl. Sci. Rev. 5, 134 (2018).

  39. 39

    T. J. Cui, and S. Liu, Opt. Photon. News, 27, 59 (2016).

  40. 40

    S. Yu, L. Li, and N. Kou, Antennas Wirel. Propag. Lett. 16, 1524 (2017).

  41. 41

    B. Rahmati, H. R. Hassani, IEEE Trans. Antennas Propag. 63 174 (2014).

  42. 42

    H. Cheng, Z. Liu, S. Chen, and J. Tian, Adv. Mater. 27, 5410 (2015).

  43. 43

    S. Chen, Y. Zhang, Z. Li, H. Cheng, and J. Tian, Adv. Opt. Mater. 7, 1801477 (2019).

  44. 44

    R. Y. Wu, Y. B. Li, W. Wu, C. B. Shi, and T. J. Cui, IEEE Trans. Antennas Propagat. 65, 3481 (2017).

  45. 45

    A. M. Patel, and A. Grbic, IEEE Trans. Antennas Propagat. 59, 2087 (2011).

  46. 46

    Y. B. Li, X. Wan, B. G. Cai, Q. Cheng, and T. J. Cui, Sci. Rep. 4, 6921 (2015).

  47. 47

    Y. B. Li, R. Y. Wu, W. Wu, C. B. Shi, Q. Cheng, and T. J. Cui, Adv. Mater. Technol. 2, 1600196 (2017).

Download references

Author information

Correspondence to TieJun Cui.

Additional information

This work was supported by the National Key Research and Development Program of China (Grant Nos. 2017YFA0700201, 2017YFA0700202, and 2017YFA0700203), the National Natural Science Foundation of China (Grant Nos. 61631007, 61731010, 61735010, 61722106, 61701107, and 61701108), the Fund for International Cooperation and Exchange of the National Natural Science Foundation of China (Grant No. 61761136007), the Overseas Expertise Introduction Project for Discipline Innovation (Grant No. 111-2-05), the Fundamental Research Funds for the Central Universities, and Postgraduate Research & Practice Innovation Program of Jiangsu Province (Grant No. KYCX17_0092), and the Scientific Research Foundation of Graduate School of Southeast University (Grant No. YBJJ-1815).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wu, R., Bao, L., Wu, L. et al. Broadband transmission-type 1-bit coding metasurface for electromagnetic beam forming and scanning. Sci. China Phys. Mech. Astron. 63, 284211 (2020). https://doi.org/10.1007/s11433-019-1479-3

Download citation

En

  • coding metasurface
  • broadband
  • transmission-type metasurface
  • beam forming
  • beam scanning