Advertisement

Dark energy versus modified gravity: Impacts on measuring neutrino mass

  • 3 Accesses

Abstract

In this paper, we make a comparison for the impacts of smooth dynamical dark energy, modified gravity, and interacting dark energy on the cosmological constraints on the total mass of active neutrinos. For definiteness, we consider the ΛCDM model, the wCDM model, the f(R) model, and two typical interacting vacuum energy models, i.e., the IΛCDM1 model with Q = βHρc and the IΛCDM2 model with Q = βHρΛ. In the cosmological fits, we use the Planck 2015 temperature and polarization data, in combination with other low-redshift observations including the baryon acoustic oscillations, the type Ia supernovae, the Hubble constant measurement, and the large-scale structure observations, such as the weak lensing as well as the redshift-space distortions. Besides, the Planck lensing measurement is also employed in this work. We find that, the wCDM model favors a higher upper limit on the neutrino mass compared to the ΛCDM model, while the upper limit in the f(R) model is similar with that in the ΛCDM model. For the interacting vacuum energy models, the IΛCDM1 model favors a higher upper limit on neutrino mass, while the IΛCDM2 model favors an identical neutrino mass with the case of ΛCDM.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

References

  1. 1

    J. Lesgourgues, and S. Pastor, Phys. Rep. 429, 307 (2006).

  2. 2

    C. Weinheimer, B. Degenddag, A. Bleile, J. Bonn, L. Bornschein, O. Kazachenko, A. Kovalik, and E. W. Otten, Phys. Lett. B 460, 219 (1999).

  3. 3

    V. M. Lobashev, V. N. Aseev, A. I. Belesev, A. I. Berlev, E. V. Geraskin, A. A. Golubev, O. V. Kazachenko, Y. E. Kuznetsov, R. P. Ostroumov, L. A. Rivkis, B. E. Stern, N. A. Titov, S. V. Zadorozhny, and Y. I. Zakharov, Phys. Lett. B 460, 227 (1999).

  4. 4

    J. Wolf, et al. (KATRIN Collaboration), Nucl. Instrum Meth Phys. Res. Sect. A 623, 442 (2010).

  5. 5

    S. Betts, W. R. Blanchard, R. H. Carnevale, C. Chang, C. Chen, S. Chidzik, L. Ciebiera, P. Cloessner, A. Cocco, A. Cohen, J. Dong, R. Klemmer, M. Komor, C. Gentile, B. Harrop, A. Hopkins, N. Jarosik, G. Mangano, M. Messina, B. Osherson, Y. Raitses, W. Sands, M. Schaefer, J. Taylor, C. G. Tully, R. Woolley, and A. Zwicker, arXiv: 1307.4738.

  6. 6

    J. Zhang, and S. Zhou, Nucl. Phys. B 903, 211 (2016).

  7. 7

    G. Y. Huang, and S. Zhou, Phys. Rev. D 94, 116009 (2016).

  8. 8

    J. Zhang, and X. Zhang, Nat. Commun. 9, 1833 (2018).

  9. 9

    P. A. R. Ade, et al. (Planck Collaboration), Astron. Astrophys. 571, A16 (2014).

  10. 10

    P. A. R. Ade, et al. (Planck Collaboration), Astron. Astrophys. 594, A13 (2016).

  11. 11

    S. Dodelson, E. Gates, and A. Stebbins, Astrophys. J. 467, 10 (1996).

  12. 12

    K. Ichikawa, M. Fukugita, and M. Kawasaki, Phys. Rev. D 71, 043001 (2005).

  13. 13

    S. Alam, et al. (BOSS Collaboration), Mon. Not. R. Astron. Soc. 470, 2617 (2017).

  14. 14

    T. M. C. Abbott, et al. (DES Collaboration), Phys. Rev. D 98, (2018).

  15. 15

    X. Zhang, Phys. Rev. D 93, 083011 (2016).

  16. 16

    M. M. Zhao, Y. H. Li, J. F. Zhang, and X. Zhang, Mon. Not. R. Astron. Soc. 469, 1713 (2017).

  17. 17

    Y. Chen, and L. Xu, Phys. Lett. B 752, 66 (2016).

  18. 18

    J. F. Zhang, M. M. Zhao, Y. H. Li, and X. Zhang, J. Cosmol. Astropart. Phys. 2015, 038 (2015).

  19. 19

    M. M. Zhao, D. Z. He, J. F. Zhang, and X. Zhang, Phys. Rev. D 96, 043520 (2017).

  20. 20

    L. Feng, J. F. Zhang, and X. Zhang, Sci. China-Phys. Mech. Astron. 61, 050411 (2018).

  21. 21

    S. Vagnozzi, S. Dhawan, M. Gerbino, K. Freese, A. Goobar, and O. Mena, Phys. Rev. D 98, 083501 (2018).

  22. 22

    X. Zhang, Sci. China-Phys. Mech. Astron. 60, 060431 (2017).

  23. 23

    M. Li, Phys. Lett. B 603, 1 (2004).

  24. 24

    Q. G. Huang, and M. Li, J. Cosmol. Astropart. Phys. 2005, 001 (2005).

  25. 25

    X. Zhang, and F. Q. Wu, Phys. Rev. D 72, 043524 (2005).

  26. 26

    X. Zhang, Phys. Rev. D 74, 103505 (2006).

  27. 27

    Z. Chang, F. Q. Wu, and X. Zhang, Phys. Lett. B 633, 14 (2006).

  28. 28

    X. Zhang, Phys. Lett. B 648, 1 (2007).

  29. 29

    X. Zhang, and F. Q. Wu, Phys. Rev. D 76, 023502 (2007).

  30. 30

    J. Zhang, X. Zhang, and H. Liu, Eur. Phys. J. C 52, 693 (2007).

  31. 31

    J. Zhang, X. Zhang, and H. Liu, Phys. Lett. B 651, 84 (2007).

  32. 32

    Y. Z. Ma, and X. Zhang, Phys. Lett. B 661, 239 (2008).

  33. 33

    J. F. Zhang, M. M. Zhao, J. L. Cui, and X. Zhang, Eur. Phys. J. C 74, 3178 (2014).

  34. 34

    M. J. Mortonson, D. H. Weinberg, and M. White, arXiv: 1401.0046.

  35. 35

    T. P. Sotiriou, and V. Faraoni, Rev. Mod. Phys. 82, 451 (2010).

  36. 36

    A. De Felice, and S. Tsujikawa, Living Rev. Relativ. 13, 3 (2010).

  37. 37

    T. Clifton, P. G. Ferreira, A. Padilla, and C. Skordis, Phys. Rep. 513, 1 (2012).

  38. 38

    D. H. Weinberg, M. J. Mortonson, D. J. Eisenstein, C. Hirata, A. G. Riess, and E. Rozo, Phys. Rep. 530, 87 (2013).

  39. 39

    A. Joyce, B. Jain, J. Khoury, and M. Trodden, Phys. Rep. 568, 1 (2015).

  40. 40

    S. M. Carroll, V. Duvvuri, M. Trodden, and M. S. Turner, Phys. Rev. D 70, 043528 (2004).

  41. 41

    G. Dvali, G. Gabadadze, and M. Porrati, Phys. Lett. B 485, 208 (2000).

  42. 42

    L. M. Wang, and P. J. Steinhardt, Astrophys. J. 508, 483 (1998).

  43. 43

    E. V. Linder, Phys. Rev. D 72, 043529 (2005).

  44. 44

    Y. S. Song, W. Hu, and I. Sawicki, Phys. Rev. D 75, 044004 (2007).

  45. 45

    E. Bertschinger, and P. Zukin, Phys. Rev. D 78, 024015 (2008).

  46. 46

    T. Giannantonio, M. Martinelli, A. Silvestri, and A. Melchiorri, J. Cosmol. Astropart. Phys. 2010, 030 (2010).

  47. 47

    Y. H. Li, J. F. Zhang, and X. Zhang, Phys. Lett. B 744, 213 (2015).

  48. 48

    L. Amendola, Phys. Rev. D 62, 043511 (2000).

  49. 49

    W. Zimdahl, Int. J. Mod. Phys. D 14, 2319 (2005).

  50. 50

    X. Zhang, Mod. Phys. Lett. A 20, 2575 (2005).

  51. 51

    X. Zhang, Phys. Lett. B 611, 1 (2005).

  52. 52

    X. Zhang, F. Q. Wu, and J. Zhang, J. Cosmol. Astropart. Phys. 2006, 003 (2006).

  53. 53

    B. Wang, J. Zang, C. Y. Lin, E. Abdalla, and S. Micheletti, Nucl. Phys. B 778, 69 (2007).

  54. 54

    Z. K. Guo, N. Ohta, and S. Tsujikawa, Phys. Rev. D 76, 023508 (2007).

  55. 55

    J. Zhang, X. Zhang, and H. Liu, Phys. Lett. B 659, 26 (2008).

  56. 56

    M. Li, X. D. Li, S. Wang, Y. Wang, and X. Zhang, J. Cosmol. Astropart. Phys. 2009, 014 (2009).

  57. 57

    K. Koyama, R. Maartens, and Y. S. Song, J. Cosmol. Astropart. Phys. 2009, 017 (2009).

  58. 58

    L. Zhang, J. Cui, J. Zhang, and X. Zhang, Int. J. Mod. Phys. D 19, 21 (2010).

  59. 59

    H. Wei, Commun. Theor. Phys. 56, 972 (2011).

  60. 60

    J. H. He, B. Wang, and E. Abdalla, Phys. Rev. D 83, 063515 (2011).

  61. 61

    Y. H. Li, and X. Zhang, Eur. Phys. J. C 71, 1700 (2011).

  62. 62

    Z. Zhang, S. Li, X. D. Li, X. Zhang, and M. Li, J. Cosmol. Astropart. Phys. 2012, 009 (2012).

  63. 63

    J. F. Zhang, L. A. Zhao, and X. Zhang, Sci. China-Phys. Mech. Astron. 57, 387 (2014).

  64. 64

    Y. H. Li, and X. Zhang, Phys. Rev. D 89, 083009 (2014).

  65. 65

    S. Wang, Y. Z. Wang, J. J. Geng, and X. Zhang, Eur. Phys. J. C 74, 3148 (2014).

  66. 66

    J. J. Geng, Y. H. Li, J. F. Zhang, and X. Zhang, Eur. Phys. J. C 75, 356 (2015).

  67. 67

    R. Murgia, S. Gariazzo, and N. Fornengo, J. Cosmol. Astropart. Phys. 2016, 014 (2016).

  68. 68

    B. Wang, E. Abdalla, F. Atrio-Barandela, and D. Pavón, Rep. Prog. Phys. 79, 096901 (2016).

  69. 69

    A. Pourtsidou, and T. Tram, Phys. Rev. D 94, 043518 (2016).

  70. 70

    L. Feng, and X. Zhang, J. Cosmol. Astropart. Phys. 2016, 072 (2016).

  71. 71

    D. M. Xia, and S. Wang, Mon. Not. R. Astron. Soc. 463, 952 (2016).

  72. 72

    A. A. Costa, X. D. Xu, B. Wang, and E. Abdalla, J. Cosmol. Astropart. Phys. 2017, 028 (2017).

  73. 73

    C. van de Bruck, J. Mifsud, and J. Morrice, Phys. Rev. D 95, 043513 (2017).

  74. 74

    S. Kumar, and R. C. Nunes, Phys. Rev. D 96, 103511 (2017).

  75. 75

    H. L. Li, J. F. Zhang, L. Feng, and X. Zhang, Eur. Phys. J. C 77, 907 (2017).

  76. 76

    J. Solá Peracaula, J. de Cruz Pérez, and A. Gómez-Valent, Mon. Not. R. Astron. Soc. 478, 4357 (2018).

  77. 77

    J. J. Guo, J. F. Zhang, Y. H. Li, D. Z. He, and X. Zhang, Sci. China-Phys. Mech. Astron. 61, 030011 (2018).

  78. 78

    H. L. Li, L. Feng, J. F. Zhang, and X. Zhang, Sci. China-Phys. Mech. Astron. 62, 120411 (2019).

  79. 79

    R. Y. Guo, Y. H. Li, J. F. Zhang, and X. Zhang, J. Cosmol. Astropart. Phys. 2017, 040 (2017).

  80. 80

    R. Y. Guo, J. F. Zhang, and X. Zhang, Chin. Phys. C 42, 095103 (2018).

  81. 81

    L. Feng, H. L. Li, J. F. Zhang, and X. Zhang, Sci. China-Phys. Mech. Astron. 63, 220401 (2020).

  82. 82

    L. Feng, D. Z. He, H. L. Li, J. F. Zhang, and X. Zhang, arXiv: 1910.03872.

  83. 83

    A. Lewis, A. Challinor, and A. Lasenby, Astrophys. J. 538, 473 (2000).

  84. 84

    A. Hojjati, L. Pogosian, and G. B. Zhao, J. Cosmol. Astropart. Phys. 2011, 005 (2011).

  85. 85

    J. Väliviita, E. Majerotto, and R. Maartens, J. Cosmol. Astropart. Phys. 2008, 020 (2008).

  86. 86

    Y. H. Li, J. F. Zhang, and X. Zhang, Phys. Rev. D 90, 063005 (2014).

  87. 87

    Y. H. Li, J. F. Zhang, and X. Zhang, Phys. Rev. D 90, 123007 (2014).

  88. 88

    Y. H. Li, J. F. Zhang, and X. Zhang, Phys. Rev. D 93, 023002 (2016).

  89. 89

    X. Zhang, Sci. China-Phys. Mech. Astron. 60, 050431 (2017).

  90. 90

    L. Feng, J. F. Zhang, and X. Zhang, Phys. Dark Universe 23, 100261 (2019).

  91. 91

    L. Feng, Y. H. Li, F. Yu, J. F. Zhang, and X. Zhang, Eur. Phys. J. C 78, 865 (2018).

  92. 92

    J. Dossett, B. Hu, and D. Parkinson, J. Cosmol. Astropart. Phys. 2014, 046 (2014).

  93. 93

    Q. G. Huang, K. Wang, and S. Wang, Eur. Phys. J. C 76, 489 (2016).

  94. 94

    S. Wang, Y. F. Wang, D. M. Xia, and X. Zhang, Phys. Rev. D 94, 083519 (2016).

  95. 95

    M. M. Zhao, J. F. Zhang, and X. Zhang, Phys. Lett. B 779, 473 (2018).

  96. 96

    N. Aghanim, et al. (Planck Collaboration), Astron. Astrophys. 594, A11 (2016).

  97. 97

    F. Beutler, C. Blake, M. Colless, D. H. Jones, L. Staveley-Smith, L. Campbell, Q. Parker, W. Saunders, and F. Watson, Mon. Not. R. Astron. Soc. 416, 3017 (2011).

  98. 98

    A. J. Ross, L. Samushia, C. Howlett, W. J. Percival, A. Burden, and M. Manera, Mon. Not. R. Astron. Soc. 449, 835 (2015).

  99. 99

    H. Gil-Marín, W. J. Percival, A. J. Cuesta, J. R. Brownstein, C. H. Chuang, S. Ho, F. S. Kitaura, C. Maraston, F. Prada, S. Rodríguez-Torres, A. J. Ross, D. J. Schlegel, D. P. Schneider, D. Thomas, J. L. Tinker, R. Tojeiro, M. Vargas Magaña, and G. B. Zhao, Mon. Not. R. Astron. Soc. 460, 4210 (2016).

  100. 100

    M. Betoule, et al. (SDSS Collaboration), Astron. Astrophys. 568, A22 (2014).

  101. 101

    G. Efstathiou, Mon. Not. R. Astron. Soc. 440, 1138 (2014).

  102. 102

    H. Gil-Marín, W. J. Percival, L. Verde, J. R. Brownstein, C. H. Chuang, F. S. Kitaura, S. A. Rodríguez-Torres, and M. D. Olmstead, Mon. Not. R. Astron. Soc. 465, 1757 (2017).

  103. 103

    P. A. R. Ade, et al. (Planck Collaboration), Astron. Astrophys. 594, A15 (2016).

  104. 104

    A. Lewis, and S. Bridle, Phys. Rev. D 66, 103511 (2002).

  105. 105

    A. G. Riess, L. M. Macri, S. L. Hoffmann, D. Scolnic, S. Casertano, A. V. Filippenko, B. E. Tucker, M. J. Reid, D. O. Jones, J. M. Silverman, R. Chornock, P. Challis, W. Yuan, P. J. Brown, and R. J. Foley, Astrophys. J. 826, 56 (2016).

  106. 106

    B. Hu, M. Raveri, A. Silvestri, and N. Frusciante, Phys. Rev. D 91, 063524 (2015).

  107. 107

    N. Bellomo, E. Bellini, B. Hu, R. Jimenez, C. Pena-Garay, and L. Verde, J. Cosmol. Astropart. Phys. 2017(02), 043 (2017).

Download references

Author information

Correspondence to Xin Zhang.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11975072, 11875102, 11835009, and 11690021), and the National Program for Support of Top-Notch Young Professionals.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhao, M., Guo, R., He, D. et al. Dark energy versus modified gravity: Impacts on measuring neutrino mass. Sci. China Phys. Mech. Astron. 63, 230412 (2020) doi:10.1007/s11433-019-1474-8

Download citation

  • neutrino mass
  • dark energy
  • modified gravity
  • interacting dark energy
  • cosmological observations