Advertisement

The recent progress of functionally graded CNT reinforced composites and structures

  • Kim Meow Liew
  • Zhouzhou Pan
  • Lu-Wen ZhangEmail author
Invited Review
  • 3 Downloads

Abstract

In the last decade, the functionally graded carbon nanotube reinforced composites (FG-CNTRCs) have attracted considerable interest due to their excellent mechanical properties, and the structures made of FG-CNTRCs have found broad potential applications in aerospace, civil and ocean engineering, automotive industry, and smart structures. Here we review the literature regarding the mechanical analysis of bulk CNTR nanocomposites and FG-CNTRC structures, aiming to provide a clear picture of the mechanical modeling and properties of FG-CNTRCs as well as their composite structures. The review is organized as follows: (1) a brief introduction to the functionally graded materials (FGM), CNTRCs and FG-CNTRCs; (2) a literature review of the mechanical modeling methodologies and properties of bulk CNTRCs; (3) a detailed discussion on the mechanical behaviors of FG-CNTRCs; and (4) conclusions together with a suggestion of future research trends.

functionally graded carbon nanotube reinforced composite modeling methodology mechanical properties beam plate shell 

Notes

References

  1. 1.
    H.-S. Shen, Functionally Graded Materials: Nonlinear Analysis of Plates and Shells (CRC Press, Boca Raton, 2009).Google Scholar
  2. 2.
    S. Chakraverty, and K. K. Pradhan, Vibration of Functionally Graded Beams and Plates (Academic Press, London, 2016).Google Scholar
  3. 3.
    G. Udupa, S. S. Rao, and K. V. Gangadharan, Procedia Mater. Sci. 5, 1291 (2014).CrossRefGoogle Scholar
  4. 4.
    T. Hirai, and L. Chen, Mater. Sci. Forum. 308–311, 509 (1999).CrossRefGoogle Scholar
  5. 5.
    N. Zhang, T. Khan, H. Guo, S. Shi, W. Zhong, and W. Zhang, Adv. Mater. Sci. Eng. 2019, 1 (2019).Google Scholar
  6. 6.
    Y. Li, Q. Wang, and S. Wang, Compos. Part B-Eng. 160, 348 (2019).CrossRefGoogle Scholar
  7. 7.
    E. T. Thostenson, Z. Ren, and T. W. Chou, Compos. Sci. Tech. 61, 1899 (2001).CrossRefGoogle Scholar
  8. 8.
    E. W. Wong, P. E. Sheehan, and C. M. Lieber, Science 277, 1971 (1997).CrossRefGoogle Scholar
  9. 9.
    J. N. Coleman, U. Khan, and Y. K. Gun’ko, Adv. Mater. 18, 689 (2006).CrossRefGoogle Scholar
  10. 10.
    K. M. Liew, J. W. Yan, and L.-W. Zhang, Mechanical Behaviors of Carbon Nanotubes: Theoretical and Numerical Approaches (William Andrew, Amsterdam, 2016).Google Scholar
  11. 11.
    Z. P. Xu, and Q. S. Zheng, Sci. China-Phys. Mech. Astron. 61, 074601 (2018).ADSCrossRefGoogle Scholar
  12. 12.
    P. G. Collins, and P. Avouris, Sci. Am. 283, 62 (2000).CrossRefGoogle Scholar
  13. 13.
    V. Vijayaraghavan, J. F. N. Dethan, and L. Gao, Sci. China-Phys. Mech. Astron. 62, 034611 (2019).CrossRefGoogle Scholar
  14. 14.
    D. Qian, E. C. Dickey, R. Andrews, and T. Rantell, Appl. Phys. Lett. 76, 2868 (2000).ADSCrossRefGoogle Scholar
  15. 15.
    T. Liu, I. Y. Phang, L. Shen, S. Y. Chow, and W. D. Zhang, Macromolecules 37, 7214 (2004).ADSCrossRefGoogle Scholar
  16. 16.
    J. N. Coleman, U. Khan, W. J. Blau, and Y. K. Gun’ko, Carbon 44, 1624 (2006).CrossRefGoogle Scholar
  17. 17.
    K. M. Liew, Z. X. Lei, and L. W. Zhang, Compos. Struct. 120, 90 (2015).CrossRefGoogle Scholar
  18. 18.
    S. R. Bakshi, D. Lahiri, and A. Agarwal, Int. Mater. Rev. 55, 41 (2013).CrossRefGoogle Scholar
  19. 19.
    H. Qian, E. S. Greenhalgh, M. S. P. Shaffer, and A. Bismarck, J. Mater. Chem. 20, 4751 (2010).CrossRefGoogle Scholar
  20. 20.
    P. C. Ma, N. A. Siddiqui, G. Marom, and J. K. Kim, Compos. Part A-Appl. Sci. Manuf. 41, 1345 (2010).CrossRefGoogle Scholar
  21. 21.
    Q. Wen, R. Zhang, W. Qian, Y. Wang, P. Tan, J. Nie, and F. Wei, Chem. Mater. 22, 1294 (2010).CrossRefGoogle Scholar
  22. 22.
    R. Zhang, Y. Zhang, Q. Zhang, H. Xie, W. Qian, and F. Wei, ACS Nano 7, 6156 (2013).CrossRefGoogle Scholar
  23. 23.
    T. Lv, Y. Yao, N. Li, and T. Chen, Angew. Chem. Int. Ed. 55, 9191 (2016).CrossRefGoogle Scholar
  24. 24.
    S. Yasuda, A. Furuya, Y. Uchibori, J. Kim, and K. Murakoshi, Adv. Funct. Mater. 26, 738 (2016).CrossRefGoogle Scholar
  25. 25.
    H. Xie, R. Zhang, Y. Zhang, Z. Yin, M. Jian, and F. Wei, Carbon 98, 157 (2016).CrossRefGoogle Scholar
  26. 26.
    L. Kang, S. Zhang, Q. Li, and J. Zhang, J. Am. Chem. Soc. 138, 6727 (2016).CrossRefGoogle Scholar
  27. 27.
    P. M. Ajayan, O. Stephan, C. Colliex, and D. Trauth, Science 265, 1212 (1994).ADSCrossRefGoogle Scholar
  28. 28.
    G. L. Goh, S. Agarwala, and W. Y. Yeong, Adv. Mater. Interfaces 6, 1801318 (2019).CrossRefGoogle Scholar
  29. 29.
    K. Iakoubovskii, Open Phys. 7, 645 (2009).ADSGoogle Scholar
  30. 30.
    R. Beigmoradi, A. Samimi, and D. Mohebbi-Kalhori, Beilstein J. Nanotechnol. 9, 415 (2018).CrossRefGoogle Scholar
  31. 31.
    H. Kwon, C. R. Bradbury, and M. Leparoux, Adv. Eng. Mater. 13, 325 (2011).CrossRefGoogle Scholar
  32. 32.
    H. S. Shen, Compos. Struct. 91, 9 (2009).CrossRefGoogle Scholar
  33. 33.
    H. S. Shen, Compos. Struct. 93, 2096 (2011).CrossRefGoogle Scholar
  34. 34.
    H. S. Shen, and Y. Xiang, Comput. Methods Appl. Mech. Eng. 213–216, 196 (2012).ADSCrossRefGoogle Scholar
  35. 35.
    H. S. Shen, and C. L. Zhang, Mater. Des. 31, 3403 (2010).CrossRefGoogle Scholar
  36. 36.
    H. S. Shen, and Z. H. Zhu, Eur. J. Mech. A-Solids 35, 10 (2012).ADSMathSciNetCrossRefGoogle Scholar
  37. 37.
    K. M. Liew, Z. X. Lei, J. L. Yu, and L. W. Zhang, Comput. Methods Appl. Mech. Eng. 268, 1 (2014).ADSCrossRefGoogle Scholar
  38. 38.
    L. W. Zhang, Z. X. Lei, K. M. Liew, and J. L. Yu, Comput. Methods Appl. Mech. Eng. 273, 1 (2014).ADSCrossRefGoogle Scholar
  39. 39.
    L. W. Zhang, and K. M. Liew, Appl. Math. Comput. 246, 268 (2014).MathSciNetGoogle Scholar
  40. 40.
    L. W. Zhang, Y. J. Deng, K. M. Liew, and Y. M. Cheng, Comput. Math. Appl. 68, 1093 (2014).MathSciNetCrossRefGoogle Scholar
  41. 41.
    Z. X. Lei, K. M. Liew, and J. L. Yu, Compos. Struct. 98, 160 (2013).CrossRefGoogle Scholar
  42. 42.
    Z. X. Lei, K. M. Liew, and J. L. Yu, Comput. Methods Appl. Mech. Eng. 256, 189 (2013).ADSCrossRefGoogle Scholar
  43. 43.
    Z. X. Lei, K. M. Liew, and J. L. Yu, Compos. Struct. 106, 128 (2013).ADSCrossRefGoogle Scholar
  44. 44.
    B. Prasanna Sahoo, and D. Das, Mater. Today-Proc. 5, 20549 (2018).CrossRefGoogle Scholar
  45. 45.
    S. Imtiaz, M. Siddiq, A. Kausar, S. T. Muntha, J. Ambreen, and I. Bibi, Chin. J. Polym. Sci. 36, 445 (2017).CrossRefGoogle Scholar
  46. 46.
    S. Shahidi, and B. Moazzenchi, J. Textile Instit. 109, 1653 (2018).CrossRefGoogle Scholar
  47. 47.
    M. D. Yadav, K. Dasgupta, A. W. Patwardhan, and J. B. Joshi, Ind. Eng. Chem. Res. 56, 12407 (2017).CrossRefGoogle Scholar
  48. 48.
    M. Griebel, and J. Hamaekers, Comput. Methods Appl. Mech. Eng. 193, 1773 (2004).ADSCrossRefGoogle Scholar
  49. 49.
    S. Frankland, V. Harik, G. Odegard, D. Brenner, and T. Gates, Compos. Sci. Tech. 63, 1655 (2003).CrossRefGoogle Scholar
  50. 50.
    M. Mahboob, and M. Z. Islam, Comput. Mater. Sci. 79, 223 (2013).CrossRefGoogle Scholar
  51. 51.
    S. Yang, S. Yu, and M. Cho, Carbon 55, 133 (2013).CrossRefGoogle Scholar
  52. 52.
    Q. Lv, Z. Wang, S. Chen, C. Li, S. Sun, and S. Hu, Int. J. Mech. Sci. 131–132, 527 (2017).CrossRefGoogle Scholar
  53. 53.
    S. Sharma, R. Chandra, P. Kumar, and N. Kumar, Comput. Mater. Sci. 86, 1 (2014).CrossRefGoogle Scholar
  54. 54.
    M. Grujicic, Y. P. Sun, and K. L. Koudela, Appl. Surf. Sci. 253, 3009 (2007).ADSCrossRefGoogle Scholar
  55. 55.
    K. Sharma, K. Sen Kaushalyayan, and M. Shukla, Comput. Mater. Sci. 99, 232 (2015).CrossRefGoogle Scholar
  56. 56.
    Q. L. Xiong, and S. A. Meguid, Eur. Polym. J. 69, 1 (2015).CrossRefGoogle Scholar
  57. 57.
    Z. Yuan, Z. Lu, M. Chen, Z. Yang, and F. Xie, Appl. Surf. Sci. 351, 1043 (2015).CrossRefGoogle Scholar
  58. 58.
    X. Peng, and S. A. Meguid, Comput. Mater. Sci. 126, 204 (2017).CrossRefGoogle Scholar
  59. 59.
    B. K. Choi, G. H. Yoon, and S. Lee, Compos. Part B-Eng. 91, 119 (2016).CrossRefGoogle Scholar
  60. 60.
    J. Xiang, L. Xie, S. A. Meguid, S. Pang, J. Yi, Y. Zhang, and R. Liang, Comput. Mater. Sci. 128, 359 (2017).CrossRefGoogle Scholar
  61. 61.
    J. Qu, and M. Cherkaoui, Fundamentals of Micromechanics of Solids (Wiley Hoboken, New York, 2006).CrossRefGoogle Scholar
  62. 62.
    X. L. Chen, and Y. J. Liu, Comput. Mater. Sci. 29, 1 (2004).CrossRefGoogle Scholar
  63. 63.
    Y. Han, and J. Elliott, Comput. Mater. Sci. 39, 315 (2007).CrossRefGoogle Scholar
  64. 64.
    L. W. Zhang, W. C. Cui, and K. M. Liew, Int. J. Mech. Sci. 103, 9 (2015).CrossRefGoogle Scholar
  65. 65.
    L. W. Zhang, Z. X. Lei, and K. M. Liew, Compos. Part B-Eng. 75, 36 (2015).CrossRefGoogle Scholar
  66. 66.
    L. W. Zhang, Z. X. Lei, and K. M. Liew, Appl. Math. Comput. 256, 488 (2015).MathSciNetGoogle Scholar
  67. 67.
    L. W. Zhang, Z. X. Lei, and K. M. Liew, Eng. Anal. Bound. Elem. 58, 7 (2015).MathSciNetCrossRefGoogle Scholar
  68. 68.
    L. W. Zhang, Z. X. Lei, and K. M. Liew, J. Vib. Control 23, 1026 (2017).MathSciNetCrossRefGoogle Scholar
  69. 69.
    F. Lin, and Y. Xiang, Appl. Mech. Mater. 553, 681 (2014).CrossRefGoogle Scholar
  70. 70.
    D. L. Shi, X. Q. Feng, Y. Y. Huang, K. C. Hwang, and H. Gao, J. Eng. Mater. Tech. 126, 250 (2004).CrossRefGoogle Scholar
  71. 71.
    G. Formica, W. Lacarbonara, and R. Alessi, J. Sound Vib. 329, 1875 (2010).ADSCrossRefGoogle Scholar
  72. 72.
    E. García-Macías, L. Rodriguez-Tembleque, R. Castro-Triguero, and A. Sáez, Compos. Part B-Eng. 108, 243 (2017).CrossRefGoogle Scholar
  73. 73.
    P. Barai, and G. J. Weng, Int. J. Plast. 27, 539 (2011).CrossRefGoogle Scholar
  74. 74.
    F. Tornabene, N. Fantuzzi, M. Bacciocchi, and E. Viola, Compos. Part B-Eng. 89, 187 (2016).CrossRefGoogle Scholar
  75. 75.
    S. Sharma, R. Chandra, P. Kumar, and N. Kumar, Acta Mech. Solid Sin. 28, 409 (2015).CrossRefGoogle Scholar
  76. 76.
    G. D. Seidel, and D. C. Lagoudas, Mech. Mater. 38, 884 (2006).CrossRefGoogle Scholar
  77. 77.
    R. Rafiee, Compos. Struct. 97, 304 (2013).CrossRefGoogle Scholar
  78. 78.
    J. E. Jam, A. Pourasghar, S. Kamarian, and S. Maleki, Polym Compos 34, 241 (2013).CrossRefGoogle Scholar
  79. 79.
    Y. J. Liu, and X. L. Chen, Mech. Mater. 35, 69 (2003).CrossRefGoogle Scholar
  80. 80.
    H. Golestanian, and M. Shojaie, Comput. Mater. Sci. 50, 731 (2010).CrossRefGoogle Scholar
  81. 81.
    F. T. Fisher, R. D. Bradshaw, and L. C. Brinson, Compos. Sci. Tech. 63, 1689 (2003).CrossRefGoogle Scholar
  82. 82.
    F. T. Fisher, R. D. Bradshaw, and L. C. Brinson, Appl. Phys. Lett. 80, 4647 (2002).ADSCrossRefGoogle Scholar
  83. 83.
    R. D. Bradshaw, F. T. Fisher, and L. C. Brinson, Compos. Sci. Tech. 63, 1705 (2003).CrossRefGoogle Scholar
  84. 84.
    S. Paunikar, and S. Kumar, Comput. Mater. Sci. 95, 21 (2014).CrossRefGoogle Scholar
  85. 85.
    M. C. Ray, and S. I. Kundalwal, Eur. J. Mech. A-Solids 44, 41 (2014).ADSMathSciNetCrossRefGoogle Scholar
  86. 86.
    U. A. Joshi, S. C. Sharma, and S. P. Harsha, Compos. Part B-Eng. 43, 2063 (2012).CrossRefGoogle Scholar
  87. 87.
    K. I. Tserpes, and A. Chanteli, Compos. Struct. 99, 366 (2013).CrossRefGoogle Scholar
  88. 88.
    K. Guru, T. Sharma, K. K. Shukla, and S. B. Mishra, J. Nanomech. Micromech. 6, 04016004 (2016).CrossRefGoogle Scholar
  89. 89.
    A. H. Esbati, and S. Irani, Aerosp. Sci. Tech. 55, 120 (2016).CrossRefGoogle Scholar
  90. 90.
    K. Bhowmik, P. Kumar, N. Khutia, and A. R. Chowdhury, Mater. Today-Proc. 5, 20528 (2018).CrossRefGoogle Scholar
  91. 91.
    J. F. Wang, and K. M. Liew, Compos. Struct. 124, 1 (2015).ADSCrossRefGoogle Scholar
  92. 92.
    K. Yazdchi, and M. Salehi, Compos. Part A-Appl. Sci. Manuf. 42, 1301 (2011).CrossRefGoogle Scholar
  93. 93.
    H. Golestanian, and M. H. Gahruei, Mater. Sci. Tech. 29, 913 (2013).CrossRefGoogle Scholar
  94. 94.
    Z. Z. Pan, R. Huang, and Z. S. Liu, Polym. Compos. 40, 353 (2019).CrossRefGoogle Scholar
  95. 95.
    Y. Liu, N. Nishimura, and Y. Otani, Comput. Mater. Sci. 34, 173 (2005).CrossRefGoogle Scholar
  96. 96.
    Z. Hu, M. R. H. Arefin, X. Yan, and Q. H. Fan, Compos. Part B-Eng. 56, 100 (2014).CrossRefGoogle Scholar
  97. 97.
    R. Ansari, and M. K. Hassanzadeh-Aghdam, Compos. Part B-Eng. 90, 512 (2016).CrossRefGoogle Scholar
  98. 98.
    M. K. Hassanzadeh-Aghdam, M. J. Mahmoodi, and R. Ansari, Probab. Eng. Mech. 53, 39 (2018).CrossRefGoogle Scholar
  99. 99.
    M. A. S. Matos, V. L. Tagarielli, P. M. Baiz-Villafranca, and S. T. Pinho, J. Mech. Phys. Solids 114, 84 (2018).ADSCrossRefGoogle Scholar
  100. 100.
    K. M. Liew, Z. Z. Pan, and L. W. Zhang, Compos. Struct. 216, 240 (2019).CrossRefGoogle Scholar
  101. 101.
    X. L. Gao, and K. Li, Int. J. Solids Struct. 42, 1649 (2005).CrossRefGoogle Scholar
  102. 102.
    J. L. Tsai, S. H. Tzeng, and Y. T. Chiu, Compos. Part B-Eng. 41, 106 (2010).CrossRefGoogle Scholar
  103. 103.
    A. Liu, K. W. Wang, and C. E. Bakis, Compos. Part A-Appl. Sci. Manuf. 42, 1748 (2011).CrossRefGoogle Scholar
  104. 104.
    S. Yang, S. Yu, W. Kyoung, D. S. Han, and M. Cho, Polymer 53, 623 (2012).CrossRefGoogle Scholar
  105. 105.
    A. R. Alian, S. I. Kundalwal, and S. A. Meguid, Polymer 70, 149 (2015).CrossRefGoogle Scholar
  106. 106.
    H. K. Choi, H. Jung, Y. Oh, H. Hong, J. Yu, and E. S. Shin, Compos. Sci. Tech. 168, 145 (2018).CrossRefGoogle Scholar
  107. 107.
    D. Luo, W. X. Wang, and Y. Takao, Compos. Sci. Tech. 67, 2947 (2007).CrossRefGoogle Scholar
  108. 108.
    G. Odegard, T. Gates, K. Wise, C. Park, and E. Siochi, Compos. Sci. Tech. 63, 1671 (2003).CrossRefGoogle Scholar
  109. 109.
    M. R. Ayatollahi, S. Shadlou, and M. M. Shokrieh, Compos. Struct. 93, 2250 (2011).CrossRefGoogle Scholar
  110. 110.
    D. N. Savvas, V. Papadopoulos, and M. Papadrakakis, Int. J. Solids Struct. 49, 3823 (2012).CrossRefGoogle Scholar
  111. 111.
    E. García-Macías, C. F. Guzmán, E. I. Saavedra Flores, and R. Castro-Triguero, Compos. Part B-Eng. 159, 114 (2019).CrossRefGoogle Scholar
  112. 112.
    Y. Chandra, F. Scarpa, S. Adhikari, J. Zhang, E. I. Saavedra Flores, and H. X. Peng, Compos. Part B-Eng. 102, 1 (2016).CrossRefGoogle Scholar
  113. 113.
    S. Mohammadi, and M. H. Yas, J. Reinf. Plast. Compos. 35, 1477 (2016).CrossRefGoogle Scholar
  114. 114.
    K. Grabowski, P. Zbyrad, T. Uhl, W. J. Staszewski, and P. Packo, Comput. Mater. Sci. 135, 169 (2017).CrossRefGoogle Scholar
  115. 115.
    E. Yousefi, A. Sheidaei, M. Mahdavi, M. Baniassadi, M. Baghani, and G. Faraji, Compos. Sci. Tech. 153, 222 (2017).CrossRefGoogle Scholar
  116. 116.
    J. Moon, H. Shin, K. Baek, J. Choi, and M. Cho, Compos. Sci. Tech. 166, 27 (2018).CrossRefGoogle Scholar
  117. 117.
    V. Papadopoulos, and M. Impraimakis, Compos. Struct. 182, 251 (2017).CrossRefGoogle Scholar
  118. 118.
    J. M. Wernik, and S. A. Meguid, Int. J. Solids Struct. 51, 2575 (2014).CrossRefGoogle Scholar
  119. 119.
    C. Li, and T. W. Chou, Compos. Sci. Tech. 66, 2409 (2006).CrossRefGoogle Scholar
  120. 120.
    A. Montazeri, and R. Naghdabadi, J. Appl. Polym. Sci. 117, 361 (2010).Google Scholar
  121. 121.
    A. K. Gupta, and S. P. Harsha, Compos. Part B-Eng. 95, 172 (2016).CrossRefGoogle Scholar
  122. 122.
    J. A. Palacios, and R. Ganesan, Compos. Part B-Eng. 166, 497 (2019).CrossRefGoogle Scholar
  123. 123.
    J. A. Palacios, and R. Ganesan, J. Polym. Res. 26, 124 (2019).CrossRefGoogle Scholar
  124. 124.
    V. Iacobellis, A. Radhi, and K. Behdinan, Compos. Struct. 202, 406 (2018).CrossRefGoogle Scholar
  125. 125.
    L. W. Zhang, and K. M. Liew, Comput. Methods Appl. Mech. Eng. 295, 219 (2015).ADSCrossRefGoogle Scholar
  126. 126.
    R. Ansari, T. Pourashraf, R. Gholami, and A. Shahabodini, Compos. Part B-Eng. 90, 267 (2016).CrossRefGoogle Scholar
  127. 127.
    Y. Kiani, Thin-Walled Struct. 111, 48 (2017).CrossRefGoogle Scholar
  128. 128.
    P. Kumar, and J. Srinivas, Multi Modelg Mat Struct 13, 590 (2017).CrossRefGoogle Scholar
  129. 129.
    A. Alibeigloo, and A. Emtehani, Meccanica 50, 61 (2015).MathSciNetCrossRefGoogle Scholar
  130. 130.
    A. Alibeigloo, and A. A. P. Zanoosi, Compos. Struct. 173, 268 (2017).CrossRefGoogle Scholar
  131. 131.
    M. M. Ardestani, L. W. Zhang, and K. M. Liew, Comput. Methods Appl. Mech. Eng. 317, 341 (2017).ADSCrossRefGoogle Scholar
  132. 132.
    C. L. Thanh, P. Phung-Van, C. H. Thai, H. Nguyen-Xuan, and M. Abdel Wahab, Compos. Struct. 184, 633 (2018).CrossRefGoogle Scholar
  133. 133.
    K. Mehar, and S. K. Panda, Int. J. Comput. Methods 14, 1750019 (2017).MathSciNetCrossRefGoogle Scholar
  134. 134.
    K. Mehar, and S. K. Panda, Compos. Struct. 161, 287 (2017).CrossRefGoogle Scholar
  135. 135.
    Z. X. Lei, L. W. Zhang, and K. M. Liew, Compos. Part B-Eng. 84, 211 (2016).CrossRefGoogle Scholar
  136. 136.
    F. Tornabene, N. Fantuzzi, and M. Bacciocchi, Compos. Part B-Eng. 115, 449 (2017).CrossRefGoogle Scholar
  137. 137.
    T. Dai, Y. Yang, H. L. Dai, H. Tang, and Z. Y. Lin, Compos. Struct. 215, 198 (2019).CrossRefGoogle Scholar
  138. 138.
    M. Mirzaalian, F. Aghadavoudi, and R. Moradi-Dastjerdi, J. Solid Mech. 11, 26 (2019).Google Scholar
  139. 139.
    Z. X. Lei, B. B. Yin, and K. M. Liew, Compos. Struct. 184, 314 (2018).CrossRefGoogle Scholar
  140. 140.
    L. W. Zhang, and K. M. Liew, Compos. Struct. 132, 974 (2015).CrossRefGoogle Scholar
  141. 141.
    L. W. Zhang, Z. G. Song, and K. M. Liew, Compos. Struct. 128, 165 (2015).CrossRefGoogle Scholar
  142. 142.
    L. W. Zhang, K. M. Liew, and Z. Jiang, Compos. Part B-Eng. 95, 18 (2016).CrossRefGoogle Scholar
  143. 143.
    L. W. Zhang, W. H. Liu, and K. M. Liew, Int. J. Non-Linear Mech. 86, 122 (2016).ADSCrossRefGoogle Scholar
  144. 144.
    H. S. Shen, and Y. Xiang, Compos. Struct. 131, 939 (2015).CrossRefGoogle Scholar
  145. 145.
    M. M. Keleshteri, H. Asadi, and M. M. Aghdam, Thin-Walled Struct. 135, 453 (2019).CrossRefGoogle Scholar
  146. 146.
    Z. Z. Pan, L. W. Zhang, and K. M. Liew, Comput. Methods Appl. Mech. Eng. 355, 753 (2019).ADSCrossRefGoogle Scholar
  147. 147.
    R. Ansari, J. Torabi, and M. F. Shojaei, Eur. J. Mech. A-Solids 60, 166 (2016).ADSMathSciNetCrossRefGoogle Scholar
  148. 148.
    A. Alibeigloo, and H. Jafarian, Int. J. Appl. Mech. 08, 1650033 (2016).CrossRefGoogle Scholar
  149. 149.
    R. Ansari, A. Shahabodini, and M. F. Shojaei, Compos. Struct. 139, 167 (2016).CrossRefGoogle Scholar
  150. 150.
    Z. X. Lei, L. W. Zhang, and K. M. Liew, Compos. Struct. 127, 245 (2015).CrossRefGoogle Scholar
  151. 151.
    Y. Kiani, Sci. Eng. Composite Mater. 25, 41 (2018).CrossRefGoogle Scholar
  152. 152.
    Y. Kiani, R. Dimitri, and F. Tornabene, Eng. Struct. 172, 472 (2018).CrossRefGoogle Scholar
  153. 153.
    J. Zhao, K. Choe, C. Shuai, A. Wang, and Q. Wang, Compos. Part B-Eng. 160, 225 (2019).CrossRefGoogle Scholar
  154. 154.
    L. W. Zhang, Compos. Struct. 160, 824 (2017).CrossRefGoogle Scholar
  155. 155.
    R. Zhong, Q. Wang, J. Tang, C. Shuai, and B. Qin, Compos. Struct. 194, 49 (2018).CrossRefGoogle Scholar
  156. 156.
    R. Ansari, J. Torabi, and R. Hassani, Eng. Struct. 181, 653 (2019).CrossRefGoogle Scholar
  157. 157.
    T. Vo-Duy, V. Ho-Huu, and T. Nguyen-Thoi, Front. Struct. Civ. Eng. 13, 324 (2019).CrossRefGoogle Scholar
  158. 158.
    Z. Qin, X. Pang, B. Safaei, and F. Chu, Compos. Struct. 220, 847 (2019).CrossRefGoogle Scholar
  159. 159.
    M. Heshmati, M. H. Yas, and F. Daneshmand, Compos. Struct. 125, 434 (2015).CrossRefGoogle Scholar
  160. 160.
    S. Kamarian, M. Shakeri, M. Yas, M. Bodaghi, and A. Pourasghar, Jnl Sandwich Struct. Mater. 17, 632 (2015).CrossRefGoogle Scholar
  161. 161.
    B. Safaei, R. Moradi-Dastjerdi, and F. Chu, Compos. Struct. 192, 28 (2018).CrossRefGoogle Scholar
  162. 162.
    M. Mirzaei, and Y. Kiani, Acta Mech 227, 1869 (2016).MathSciNetCrossRefGoogle Scholar
  163. 163.
    J. Fan, and J. Huang, Shock Vib. 2018, 1 (2018).CrossRefGoogle Scholar
  164. 164.
    M. M. Keleshteri, H. Asadi, and Q. Wang, Thin-Walled Struct. 120, 203 (2017).CrossRefGoogle Scholar
  165. 165.
    H. S. Shen, and H. Wang, Aerosp. Sci. Tech. 64, 63 (2017).CrossRefGoogle Scholar
  166. 166.
    K. Mehar, S. K. Panda, T. Q. Bui, and T. R. Mahapatra, J. Thermal Stresses 40, 899 (2017).CrossRefGoogle Scholar
  167. 167.
    Y. Fan, and H. Wang, Compos. Struct. 124, 35 (2015).CrossRefGoogle Scholar
  168. 168.
    Z. X. Lei, L. W. Zhang, and K. M. Liew, Appl. Math. Model. 55, 33 (2018).MathSciNetCrossRefGoogle Scholar
  169. 169.
    R. Ansari, E. Hasrati, M. Faghih Shojaei, R. Gholami, and A. Shahabodini, Physica E 69, 294 (2015).ADSCrossRefGoogle Scholar
  170. 170.
    L. W. Zhang, L. N. Xiao, G. L. Zou, and K. M. Liew, Compos. Struct. 148, 144 (2016).CrossRefGoogle Scholar
  171. 171.
    B. Safaei, R. Moradi-Dastjerdi, Z. Qin, and F. Chu, Compos. Part B-Eng. 161, 44 (2019).CrossRefGoogle Scholar
  172. 172.
    Y. Kiani, Thin-Walled Struct. 119, 47 (2017).CrossRefGoogle Scholar
  173. 173.
    Z. G. Song, L. W. Zhang, and K. M. Liew, Compos. Part B-Eng. 99, 154 (2016).CrossRefGoogle Scholar
  174. 174.
    M. Fallah, A. R. Daneshmehr, H. Zarei, H. Bisadi, and G. Minak, Compos. Struct. 187, 554 (2018).CrossRefGoogle Scholar
  175. 175.
    J. E. Jam, and Y. Kiani, Compos. Struct. 132, 35 (2015).CrossRefGoogle Scholar
  176. 176.
    B. A. Selim, L. W. Zhang, and K. M. Liew, Compos. Struct. 170, 228 (2017).CrossRefGoogle Scholar
  177. 177.
    H. Zarei, M. Fallah, H. Bisadi, A. R. Daneshmehr, and G. Minak, Compos. Part B-Eng. 113, 206 (2017).CrossRefGoogle Scholar
  178. 178.
    L. W. Zhang, Z. G. Song, P. Qiao, and K. M. Liew, Comput. Methods Appl. Mech. Eng. 313, 889 (2017).ADSCrossRefGoogle Scholar
  179. 179.
    B. A. Selim, L. W. Zhang, and K. M. Liew, Compos. Struct. 163, 350 (2017).CrossRefGoogle Scholar
  180. 180.
    K. Nguyen-Quang, T. Vo-Duy, H. Dang-Trung, and T. Nguyen-Thoi, Comput. Methods Appl. Mech. Eng. 332, 25 (2018).ADSCrossRefGoogle Scholar
  181. 181.
    Z. G. Song, L. W. Zhang, and K. M. Liew, Int. J. Mech. Sci. 105, 90 (2016).CrossRefGoogle Scholar
  182. 182.
    Z. G. Song, L. W. Zhang, and K. M. Liew, Compos. Struct. 158, 92 (2016).CrossRefGoogle Scholar
  183. 183.
    Z. X. Lei, L. W. Zhang, and K. M. Liew, Appl. Math. Computation 266, 773 (2015).MathSciNetCrossRefGoogle Scholar
  184. 184.
    R. Ansari, J. Torabi, M. F. Shojaei, and E. Hasrati, Compos. Struct. 157, 398 (2016).CrossRefGoogle Scholar
  185. 185.
    S. K. Jalali, and M. Heshmati, Thin-Walled Struct. 100, 14 (2016).CrossRefGoogle Scholar
  186. 186.
    Z. X. Lei, L. W. Zhang, and K. M. Liew, Compos. Struct. 152, 62 (2016).CrossRefGoogle Scholar
  187. 187.
    Y. Kiani, Compos. Part B-Eng. 105, 176 (2016).CrossRefGoogle Scholar
  188. 188.
    R. Ansari, J. Torabi, and R. Hassani, Comput. Math. Appl. 75, 486 (2018).MathSciNetCrossRefGoogle Scholar
  189. 189.
    S. Shams, and B. Soltani, Polym. Compos. 38, E531 (2017).CrossRefGoogle Scholar
  190. 190.
    A. H. Sofiyev, B. E. Turkaslan, R. P. Bayramov, and M. U. Salamci, Thin-Walled Struct. 144, 106338 (2019).CrossRefGoogle Scholar
  191. 191.
    A. Farzam, and B. Hassani, Compos. Struct. 206, 774 (2018).CrossRefGoogle Scholar
  192. 192.
    J. Torabi, R. Ansari, and R. Hassani, Eur. J. Mech. A-Solids 73, 144 (2019).ADSMathSciNetCrossRefGoogle Scholar
  193. 193.
    M. Mirzaei, J. Thermal Stresses 41, 920 (2018).CrossRefGoogle Scholar
  194. 194.
    J. Torabi, and R. Ansari, Struct. Eng. Mech. 68, 313 (2018).Google Scholar
  195. 195.
    P. T. Hieu, and H. V. Tung, J. Thermoplastic Compos. Mater. 266, 089270571985361 (2019).CrossRefGoogle Scholar
  196. 196.
    M. Nejati, R. Dimitri, F. Tornabene, and M. H. Yas, Appl. Sci. 7, 1223 (2017).CrossRefGoogle Scholar
  197. 197.
    Z. G. Song, L. W. Zhang, and K. M. Liew, Compos. Struct. 141, 79 (2016).CrossRefGoogle Scholar
  198. 198.
    P. K. Swain, B. Adhikari, D. K. Maiti, and B. N. Singh, Compos. Struct. 222, 110916 (2019).CrossRefGoogle Scholar
  199. 199.
    H. Asadi, and A. R. Beheshti, Acta Mech 229, 2413 (2018).MathSciNetCrossRefGoogle Scholar
  200. 200.
    L. W. Zhang, Z. G. Song, and K. M. Liew, Comput. Methods Appl. Mech. Eng. 300, 427 (2016).ADSCrossRefGoogle Scholar
  201. 201.
    D. G. Ninh, and N. D. Tien, Aerosp. Sci. Tech. 92, 501 (2019).CrossRefGoogle Scholar
  202. 202.
    M. Mehri, H. Asadi, and M. A. Kouchakzadeh, Comput. Methods Appl. Mech. Eng. 318, 957 (2017).ADSCrossRefGoogle Scholar
  203. 203.
    M. Mehri, H. Asadi, and Q. Wang, Compos. Struct. 153, 938 (2016).CrossRefGoogle Scholar
  204. 204.
    L. W. Zhang, and K. M. Liew, Compos. Struct. 138, 40 (2016).CrossRefGoogle Scholar
  205. 205.
    E. García-Macías, L. Rodríguez-Tembleque, R. Castro-Triguero, and A. Sáez, Compos. Part B-Eng. 128, 208 (2017).CrossRefGoogle Scholar
  206. 206.
    H. S. Shen, and Y. Xiang, Int. J. Mech. Sci. 107, 225 (2016).CrossRefGoogle Scholar
  207. 207.
    Y. Kiani, Compos. Struct. 159, 299 (2017).CrossRefGoogle Scholar
  208. 208.
    Y. Kiani, J. Thermal Stresses 39, 1098 (2016).CrossRefGoogle Scholar
  209. 209.
    Y. Kiani, J. Thermal Stresses 41, 866 (2018).CrossRefGoogle Scholar
  210. 210.
    V. T. Long, and H. van Tung, J. Thermoplast. Compos. Mater. doi:  https://doi.org/10.1177/0892705719828789.
  211. 211.
    P. T. Hieu, and H. van Tung, J. Thermoplastic Composite Mater. 32, 1319 (2019).CrossRefGoogle Scholar
  212. 212.
    M. M. Keleshteri, H. Asadi, and Q. Wang, Comput. Methods Appl. Mech. Eng. 325, 689 (2017).ADSCrossRefGoogle Scholar
  213. 213.
    D. G. Ninh, Thin-Walled Struct. 123, 528 (2018).CrossRefGoogle Scholar
  214. 214.
    H. L. Wu, J. Yang, and S. Kitipornchai, Thin-Walled Struct. 108, 225 (2016).CrossRefGoogle Scholar
  215. 215.
    Y. Fan, and H. Wang, Compos. Struct. 157, 386 (2016).CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Engineering Mechanics, School of Naval Architecture, Ocean and Civil EngineeringShanghai Jiao Tong UniversityShanghaiChina
  2. 2.Department of Architecture and Civil EngineeringCity University of Hong KongKowloonChina

Personalised recommendations