Effects of pairing correlation on neutron drop

  • Ying-Hui Ge
  • Ying ZhangEmail author
  • Jin-Niu Hu


In this work, the effects of the pairing correlation on the properties of neutron drops N=6–50 trapped in a harmonic oscillator potential with ħω = 10 MeV are investigated by comparing the results given by the Skyrme Hartree-Fock and Hartree-Fock-Bogoliubov theories with the density-dependent delta interaction (DDDI) pairing force. The results showed that the pairing correlation slightly made the neutron drops more bound, and increased the central neutron density, the spin-orbit and pseudo spin-orbit splittings. Thus, the pairing correlation must be accounted for to improve the Skyrme functional compared with the ab initio calculations. Furthermore, although the single-particle energy gaps with or without pairing were similar, the shell closures varied due to pair scattering. Here, the shell closures in neutron drops using the SkM* parameter set and DDDI pairing force were found at N=8, 16, and 32.


neutron drop Hartree-Fock theory Hartree-Fock-Bogoliubov theory pairing correlation 


  1. 1.
    B. S. Pudliner, A. Smerzi, J. Carlson, V. R. Pandharipande, S. C. Pieper, and D. G. Ravenhall, Phys. Rev. Lett. 76, 2416 (1996).ADSCrossRefGoogle Scholar
  2. 2.
    J. Carlson, S. Gandolfi, F. Pederiva, S. C. Pieper, R. Schiavilla, K. E. Schmidt, and R. B. Wiringa, Rev. Mod. Phys. 87, 1067 (2015), arXiv: 1412.3081.ADSCrossRefGoogle Scholar
  3. 3.
    B. R. Barrett, P. Navrátil, and J. P. Vary, Prog. Part. Nucl. Phys. 69, 131 (2013).ADSCrossRefGoogle Scholar
  4. 4.
    S. Shen, J. Hu, H. Liang, J. Meng, P. Ring, and S. Zhang, Chin. Phys. Lett. 33, 102103 (2016), arXiv: 1609.01866.ADSCrossRefGoogle Scholar
  5. 5.
    S. Shen, H. Liang, J. Meng, P. Ring, and S. Zhang, Phys. Rev. C 96, 014316 (2017), arXiv: 1705.01691.ADSCrossRefGoogle Scholar
  6. 6.
    S. Shen, H. Liang, W. H. Long, J. Meng, and P. Ring, Prog. Part. Nucl. Phys. 109, 103713 (2019).CrossRefGoogle Scholar
  7. 7.
    M. Bender, P. H. Heenen, and P. G. Reinhard, Rev. Mod. Phys. 75, 121 (2003).ADSCrossRefGoogle Scholar
  8. 8.
    J. Meng, H. Toki, S. G. Zhou, S. Q. Zhang, W. H. Long, and L. S. Geng, Prog. Part. Nucl. Phys. 57, 470 (2006).ADSCrossRefGoogle Scholar
  9. 9.
    W. Long, J. Meng, N. V. Giai, and S. G. Zhou, Phys. Rev. C 69, 034319 (2004).ADSCrossRefGoogle Scholar
  10. 10.
    J. Meng, J. Peng, S. Q. Zhang, and S. G. Zhou, Phys. Rev. C 73, 037303 (2006).ADSCrossRefGoogle Scholar
  11. 11.
    S. Gandolfi, J. Carlson, and S. C. Pieper, Phys. Rev. Lett. 106, 012501 (2011), arXiv: 1010.4583.ADSCrossRefGoogle Scholar
  12. 12.
    S. K. Bogner, R. J. Furnstahl, H. Hergert, M. Kortelainen, P. Maris, M. Stoitsov, and J. P. Vary, Phys. Rev. C 84, 044306 (2011), arXiv: 1106.3557.ADSCrossRefGoogle Scholar
  13. 13.
    S. Y. Chang, J. Morales Jr., V. R. Pandharipande, D. G. Ravenhall, J. Carlson, S. C. Pieper, R. B. Wiringa, and K. E. Schmidt, Nucl. Phys. A 746, 215 (2004).ADSCrossRefGoogle Scholar
  14. 14.
    S. C. Pieper, Nucl. Phys. A 751, 516 (2005).ADSCrossRefGoogle Scholar
  15. 15.
    D. G. Ravenhall, C. J. Pethick, and J. R. Wilson, Phys. Rev. Lett. 50, 2066 (1983).ADSCrossRefGoogle Scholar
  16. 16.
    H. D. Potter, S. Fischer, P. Maris, J. P. Vary, S. Binder, A. Calci, J. Langhammer, and R. Roth, Phys. Lett. B 739, 445 (2014), arXiv: 1406.1160.ADSCrossRefGoogle Scholar
  17. 17.
    P. Maris, J. P. Vary, S. Gandolfi, J. Carlson, and S. C. Pieper, Phys. Rev. C 87, 054318 (2013), arXiv: 1302.2089.ADSCrossRefGoogle Scholar
  18. 18.
    F. Pederiva, A. Sarsa, K. E. Schmidt, and S. Fantoni, Nucl. Phys. A 742, 255 (2004).ADSCrossRefGoogle Scholar
  19. 19.
    S. C. Pieper, V. R. Pandharipande, R. B. Wiringa, and J. Carlson, Phys. Rev. C 64, 014001 (2001).ADSCrossRefGoogle Scholar
  20. 20.
    A. Smerzi, D. G. Ravenhall, and V. R. Pandharipande, Phys. Rev. C 56, 2549 (1997).ADSCrossRefGoogle Scholar
  21. 21.
    I. Tews, S. Gandolfi, A. Gezerlis, and A. Schwenk, Phys. Rev. C 93, 024305 (2016), arXiv: 1507.05561.ADSCrossRefGoogle Scholar
  22. 22.
    S. Shen, H. Liang, J. Meng, P. Ring, and S. Zhang, Phys. Lett. B 778, 344 (2018), arXiv: 1709.06289.ADSCrossRefGoogle Scholar
  23. 23.
    M. Kortelainen, J. McDonnell, W. Nazarewicz, E. Olsen, P. G. Reinhard, J. Sarich, N. Schunck, S. M. Wild, D. Davesne, J. Erler, and A. Pastore, Phys. Rev. C 89, 054314 (2014), arXiv: 1312.1746.ADSCrossRefGoogle Scholar
  24. 24.
    J. Bonnard, M. Grasso, and D. Lacroix, Phys. Rev. C 98, 034319 (2018), arXiv: 1806.01084.ADSCrossRefGoogle Scholar
  25. 25.
    S. Shen, G. Colo, and X. Roca-Maza, Phys. Rev. C 99, 034322 (2019), arXiv: 1810.09691.ADSCrossRefGoogle Scholar
  26. 26.
    P. W. Zhao, and S. Gandolfi, Phys. Rev. C 94, 041302 (2016), arXiv: 1604.01490.ADSCrossRefGoogle Scholar
  27. 27.
    S. Shen, H. Liang, J. Meng, P. Ring, and S. Zhang, Phys. Rev. C 97, 054312 (2018), arXiv: 1802.08108.ADSCrossRefGoogle Scholar
  28. 28.
    K. T. Hecht, and A. Adler, Nucl. Phys. A 137, 129 (1969).ADSCrossRefGoogle Scholar
  29. 29.
    A. Arima, M. Harvey, and K. Shimizu, Phys. Lett. B 30, 517 (1969).ADSCrossRefGoogle Scholar
  30. 30.
    J. N. Ginocchio, Phys. Rev. Lett. 78, 436 (1997).ADSCrossRefGoogle Scholar
  31. 31.
    J. Meng, K. Sugawara-Tanabe, S. Yamaji, and A. Arima, Phys. Rev. C 59, 154 (1999).ADSCrossRefGoogle Scholar
  32. 32.
    S. G. Zhou, J. Meng, and P. Ring, Phys. Rev. Lett. 91, 262501 (2003).ADSCrossRefGoogle Scholar
  33. 33.
    T. S. Chen, H. F. Lu, J. Meng, S. Q. Zhang, and S. G. Zhou, Chin. Phys. Lett. 20, 358 (2003).ADSCrossRefGoogle Scholar
  34. 34.
    J. Ginocchio, Phys. Rep. 414, 165 (2005).ADSMathSciNetCrossRefGoogle Scholar
  35. 35.
    H. Liang, J. Meng, and S. G. Zhou, Phys. Rep. 570, 1 (2015), arXiv: 1411.6774.ADSMathSciNetCrossRefGoogle Scholar
  36. 36.
    D. M. Brink, and R. A. Broglia, The Nuclear Superfluidity Pairing in Finite Systems (Cambridge University Press, Cambridge, 2005).zbMATHCrossRefGoogle Scholar
  37. 37.
    J. Dobaczewski, H. Flocard, and J. Treiner, Nucl. Phys. A 422, 103 (1984).ADSCrossRefGoogle Scholar
  38. 38.
    J. Bartel, P. Quentin, M. Brack, C. Guet, and H. B. Håkansson, Nucl. Phys. A 386, 79 (1982).ADSCrossRefGoogle Scholar
  39. 39.
    M. Matsuo, and Y. Serizawa, Phys. Rev. C 82, 024318 (2010), arXiv: 1007.1705.ADSCrossRefGoogle Scholar
  40. 40.
    Y. Zhang, M. Matsuo, and J. Meng, Phys. Rev. C 83, 054301 (2011), arXiv: 1012.3822.ADSCrossRefGoogle Scholar
  41. 41.
    X. Y. Qu, and Y. Zhang, Phys. Rev. C 99, 014314 (2019).ADSCrossRefGoogle Scholar
  42. 42.
    X. Y. Qu, and Y. Zhang, Sci. China-Phys. Mech. Astron. 62, 112012 (2019).ADSCrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Physics, School of ScienceTianjin UniversityTianjinChina
  2. 2.School of PhysicsNankai UniversityTianjinChina

Personalised recommendations