Skip to main content
Log in

Quasi-topological electromagnetism: Dark energy, dyonic black holes, stable photon spheres and hidden electromagnetic duality

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

We introduce the quasi-topological electromagnetism which is defined to be the squared norm of the topological 4-form FF. A salient property is that its energy-momentum tensor is of the isotropic perfect fluid with the pressure being precisely the opposite to its energy density. It can thus provide a model for dark energy. We study its application in both black hole physics and cosmology. The quasi-topological term has no effect on the purely electric or magnetic Reissner-Nordström black holes, the dyonic solution is however completely modified. We find that the dyonic black holes can have four real horizons. For suitable parameters, the black hole can admit as many as three photon spheres, with one being stable. Another intriguing property is that although the quasi-topological term breaks the electromagnetic duality, the symmetry emerges in the on-shell action in the Wheeler-DeWitt patch. In cosmology, we demonstrate that the quasi-topological term alone is equivalent to a cosmological constant, but the model provides a mechanism for the dark energy to couple with other types of matter. We present a concrete example of the quasi-topological electromagnetism coupled to a scalar field that admits the standard FLRW cosmological solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Born, and L. Infeld, Proc. R. Soc. A-Math. Phys. Eng. Sci. 144, 425 (1934).

    ADS  Google Scholar 

  2. J. Oliva, and S. Ray, Class. Quantum Grav. 27, 225002 (2010), arXiv: 1003.4773.

    Article  ADS  Google Scholar 

  3. R. C. Myers, and B. Robinson, J. High Energ. Phys. 2010(8), 67 (2010), arXiv: 1003.5357.

    Article  ADS  Google Scholar 

  4. M. H. Dehghani, A. Bazrafshan, R. B. Mann, M. R. Mehdizadeh, M. Ghanaatian, and M. H. Vahidinia, Phys. Rev. D 85, 104009 (2012), arXiv: 1109.4708.

    Article  ADS  Google Scholar 

  5. Y. Z. Li, H. S. Liu, and H. Lü, J. High Energ. Phys. 2018(2), 166 (2018), arXiv: 1708.07198.

    Article  Google Scholar 

  6. B. Wang, E. Abdalla, F. Atrio-Barandela, and D. Pavón, Rep. Prog. Phys. 79, 096901 (2016), arXiv: 1603.08299.

    Article  ADS  Google Scholar 

  7. G. W. Horndeski, J. Math. Phys. 17, 1980 (1976).

    Article  ADS  Google Scholar 

  8. O. Goldoni, and M. F. A. da Silva, in Energy Conditions for Electromagnetic Field in Presence of Cosmological Constant: Proceedings of the 5th International School on Field Theory and Gravitation, Cuiab¢ city, Brazil, April 20–24, 2009.

  9. C. Gao, Y. Lu, S. Yu, and Y. G. Shen, Phys. Rev. D 97, 104013 (2018), arXiv: 1711.00996.

    Article  ADS  MathSciNet  Google Scholar 

  10. J. H. Horne, and G. T. Horowitz, Nucl. Phys. B 399, 169 (1993).

    Article  ADS  Google Scholar 

  11. K. Lee, and E. J. Weinberg, Phys. Rev. Lett. 73, 1203 (1994).

    Article  ADS  Google Scholar 

  12. G. W. Gibbons, and R. E. Kallosh, Phys. Rev. D 51, 2839 (1995).

    Article  ADS  MathSciNet  Google Scholar 

  13. K. Lee, V. P. Nair, and E. J. Weinberg, Phys. Rev. Lett. 68, 1100 (1992).

    Article  ADS  MathSciNet  Google Scholar 

  14. Q. Q. Zhao, Y. Z. Li, and H. Lu, Phys. Rev. D 98, 124001 (2018), arXiv: 1809.04616.

    Article  ADS  MathSciNet  Google Scholar 

  15. H. Lu, Z. L. Wang, and Q. Q. Zhao, Phys. Rev. D 99, 101502 (2019), arXiv: 1901.02894.

    Article  ADS  Google Scholar 

  16. D. Kastor, S. Ray, and J. Traschen, Class. Quantum Grav. 26, 195011 (2009), arXiv: 0904.2765.

    Article  ADS  Google Scholar 

  17. M. Cvetič, G. W. Gibbons, D. Kubizňák, and C. N. Pope, Phys. Rev. D 84, 024037 (2011), arXiv: 1012.2888.

    Article  ADS  Google Scholar 

  18. C. M. Claudel, K. S. Virbhadra, and G. F. R. Ellis, J. Math. Phys. 42, 818 (2001).

    Article  ADS  MathSciNet  Google Scholar 

  19. S. Hod, Phys. Rev. D 84, 124030 (2011), arXiv: 1112.3286.

    Article  ADS  Google Scholar 

  20. S. Hod, Phys. Rev. D 84, 104024 (2011), arXiv: 1201.0068.

    Article  ADS  Google Scholar 

  21. M. Cvetič, G. W. Gibbons, and C. N. Pope, Phys. Rev. D 94, 106005 (2016), arXiv: 1608.02202.

    Article  ADS  MathSciNet  Google Scholar 

  22. Y. Koga, and T. Harada, Phys. Rev. D 94, 044053 (2016), arXiv: 1601.07290.

    Article  ADS  MathSciNet  Google Scholar 

  23. S. Deser, and C. Teitelboim, Phys. Rev. D 13, 1592 (1976).

    Article  ADS  MathSciNet  Google Scholar 

  24. S. Deser, J. Phys. A-Math. Gen. 15, 1053 (1982).

    Article  ADS  Google Scholar 

  25. S. Deser, M. Henneaux, and C. Teitelboim, Phys. Rev. D 55, 826 (1997).

    Article  ADS  MathSciNet  Google Scholar 

  26. E. Cremmer, B. Julia, H. Lü, and C. N. Pope, Nucl. Phys. B 535, 242 (1998).

    Article  ADS  Google Scholar 

  27. A. R. Brown, D. A. Roberts, L. Susskind, B. Swingle, and Y. Zhao, Phys. Rev. Lett. 116, 191301 (2016).

    Article  ADS  Google Scholar 

  28. A. R. Brown, D. A. Roberts, L. Susskind, B. Swingle, and Y. Zhao, Phys. Rev. D 93, 086006 (2016), arXiv: 1512.04993.

    Article  ADS  MathSciNet  Google Scholar 

  29. K. Goto, H. Marrochio, R. C. Myers, L. Queimada, and B. Yoshida, J. High Energ. Phys. 2019(2), 160 (2019), arXiv: 1901.00014.

    Article  Google Scholar 

  30. H. S. Liu, and H. Lu, J. High Energ. Phys. 2019(9), 102 (2019).

    Article  Google Scholar 

  31. L. Lehner, R. C. Myers, E. Poisson, and R. D. Sorkin, Phys. Rev. D 94, 084046 (2016), arXiv: 1609.00207.

    Article  ADS  MathSciNet  Google Scholar 

  32. S. Li, H. Lu, and H. Wei, J. High Energ. Phys. 2016(7), 4 (2016), arXiv: 1606.02733.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Lü.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, HS., Mai, ZF., Li, YZ. et al. Quasi-topological electromagnetism: Dark energy, dyonic black holes, stable photon spheres and hidden electromagnetic duality. Sci. China Phys. Mech. Astron. 63, 240411 (2020). https://doi.org/10.1007/s11433-019-1446-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-019-1446-1

Keywords

Navigation