Advertisement

Measurement-device-independent quantum key distribution with hyper-encoding

  • 49 Accesses

  • 1 Citations

Abstract

Measurement device-independent quantum key distribution (MDI-QKD) protocols are immune to all possible attacks on the photon detectors during quantum communication, but their key generation rates are low compared with those of other QKD schemes. Increasing each individual photon’s channel capacity is an efficient way to increase the key generation rate, and high-dimensional (HD) encoding is a powerful tool for increasing the channel capacity of photons. In this paper, we propose an HD MDI-QKD protocol with qudits hyper-encoded in spatial mode and polarization degrees of freedom (DOFs). In the proposed protocol, keys can be generated using the spatial mode and polarization DOFs simultaneously. The proposed protocol is unconditionally secure, even for weak coherent pulses with decoy states. The proposed MDI-QKD protocol may be useful for future quantum secure communication applications.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

References

  1. 1

    C. H. Bennett, and G. Brassard, in Quantum cryptography: Public key distribution and coin tossing: Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, India (IEEE, New York, 1984), pp. 175–179.

  2. 2

    A. K. Ekert, Phys. Rev. Lett. 67, 661 (1991).

  3. 3

    N. J. Cerf, M. Bourennane, A. Karlsson, and N. Gisin, Phys. Rev. Lett. 88, 127902 (2002).

  4. 4

    D. Stucki, N. Gisin, O. Guinnard, G. Ribordy, and H. Zbinden, New J. Phys. 4, 41 (2002).

  5. 5

    W. Y. Hwang, Phys. Rev. Lett. 91, 057901 (2003).

  6. 6

    F. Grosshans, G. Van Assche, J. Wenger, R. Brouri, N. J. Cerf, and P. Grangier, Nature 421, 238 (2003).

  7. 7

    H. K. Lo, X. Ma, and K. Chen, Phys. Rev. Lett. 94, 230504 (2005).

  8. 8

    X. Ma, B. Qi, Y. Zhao, and H. K. Lo, Phys. Rev. A 72, 012326 (2005).

  9. 9

    T. Schmitt-Manderbach, H. Weier, M. Fürst, R. Ursin, F. Tiefenbacher, T. Scheidl, J. Perdigues, Z. Sodnik, C. Kurtsiefer, J. G. Rarity, A. Zeilinger, and H. Weinfurter, Phys. Rev. Lett. 98, 010504 (2007).

  10. 10

    B. K. Park, M. S. Lee, M. K. Woo, Y. S. Kim, S. W. Han, and S. Moon, Sci. China-Phys. Mech. Astron. 60, 060311 (2017).

  11. 11

    F. H. Xu, X. F. Ma, Q. Zhang, H. K. Lo, and J. W. Pan, arXiv: 1903.09051 (2019).

  12. 12

    M. Hillery, V. Bužek, and A. Berthiaume, Phys. Rev. A 59, 1829 (1999).

  13. 13

    Y. G. Yang, Z. C. Liu, X. B. Chen, Y. H. Zhou, and W. M. Shi, Sci. China-Phys. Mech. Astron. 60, 120311 (2017).

  14. 14

    G. L. Long, and X. S. Liu, Phys. Rev. A 65, 032302 (2002).

  15. 15

    F. G. Deng, G. L. Long, and X. S. Liu, Phys. Rev. A 68, 042317 (2003).

  16. 16

    F. G. Deng, and G. L. Long, Phys. Rev. A 69, 052319 (2004).

  17. 17

    W. Zhang, D. S. Ding, Y. B. Sheng, L. Zhou, B. S. Shi, and G. C. Guo, Phys. Rev. Lett. 118, 220501 (2017), arXiv: 1609.09184.

  18. 18

    F. Zhu, W. Zhang, Y. Sheng, and Y. Huang, Sci. Bull. 62, 1519 (2017).

  19. 19

    F. Z. Wu, G. J. Yang, H. B. Wang, J. Xiong, F. Alzahrani, A. Hobiny, and F. G. Deng, Sci. China-Phys. Mech. Astron. 60, 120313 (2017).

  20. 20

    S. S. Chen, L. Zhou, W. Zhong, and Y. B. Sheng, Sci. China-Phys. Mech. Astron. 61, 090312 (2018).

  21. 21

    Y. X. Jiang, P. L. Guo, C. Y. Gao, H. B. Wang, F. Alzahrani, A. Hobiny, and F. G. Deng, Sci. China-Phys. Mech. Astron. 60, 120312 (2017), arXiv: 1804.00873.

  22. 22

    F. Wang, M. X. Luo, G. Xu, X. B. Chen, and Y. X. Yang, Sci. China-Phys. Mech. Astron. 61, 060312 (2018).

  23. 23

    H. Lo, and H. F. Chau, Science 283, 2050 (1999).

  24. 24

    N. Lütkenhaus, Phys. Rev. A 61, 052304 (2000).

  25. 25

    P. W. Shor, and J. Preskill, Phys. Rev. Lett. 85, 441 (2000).

  26. 26

    D. Mayers, J. ACM 48, 351 (2001).

  27. 27

    D. Gottesman, H. K. Lo, N. Lütkenhaus, and J. Preskill, Quant. Inf. Comput. 4, 325 (2004).

  28. 28

    V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek, N. Lütkenhaus, and M. Peev, Rev. Mod. Phys. 81, 1301 (2009), arXiv: 0802.4155.

  29. 29

    B. Qi, C. H. F. Fung, H. K. Lo, and X. F. Ma, Quant. Inf. Comput. 7, 73 (2007).

  30. 30

    Y. Zhao, C. H. F. Fung, B. Qi, C. Chen, and H. K. Lo, Phys. Rev. A 78, 042333 (2008), arXiv: 0704.3253.

  31. 31

    N. Jain, C. Wittmann, L. Lydersen, C. Wiechers, D. Elser, C. Marquardt, V. Makarov, and G. Leuchs, Phys. Rev. Lett. 107, 110501 (2011), arXiv: 1103.2327.

  32. 32

    V. Makarov, and D. R. Hjelme, J. Modern Opt. 52, 691 (2005).

  33. 33

    V. Makarov, A. Anisimov, and J. Skaar, Phys. Rev. A 74, 022313 (2006).

  34. 34

    V. Makarov, New J. Phys. 11, 065003 (2009).

  35. 35

    L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, and V. Makarov, Nat. Photon 4, 686 (2010), arXiv: 1008.4593.

  36. 36

    A. Acín, N. Brunner, N. Gisin, S. Massar, S. Pironio, and V. Scarani, Phys. Rev. Lett. 98, 230501 (2007).

  37. 37

    S. Pironio, A. Acín, N. Brunner, N. Gisin, S. Massar, and V. Scarani, New J. Phys. 11, 045021 (2009), arXiv: 0903.4460.

  38. 38

    L. Masanes, S. Pironio, and A. Acín, Nat. Commun. 2, 238 (2011), arXiv: 1009.1567.

  39. 39

    U. Vazirani, and T. Vidick, Phys. Rev. Lett. 113, 140501 (2014).

  40. 40

    H. K. Lo, M. Curty, and B. Qi, Phys. Rev. Lett. 108, 130503 (2012), arXiv: 1109.1473.

  41. 41

    Y. Liu, T. Y. Chen, L. J. Wang, H. Liang, G. L. Shentu, J. Wang, K. Cui, H. L. Yin, N. L. Liu, L. Li, X. Ma, J. S. Pelc, M. M. Fejer, C. Z. Peng, Q. Zhang, and J. W. Pan, Phys. Rev. Lett. 111, 130502 (2013), arXiv: 1209.6178.

  42. 42

    Z. Tang, Z. Liao, F. Xu, B. Qi, L. Qian, and H. K. Lo, Phys. Rev. Lett. 112, 190503 (2014), arXiv: 1306.6134.

  43. 43

    Y. L. Tang, H. L. Yin, S. J. Chen, Y. Liu, W. J. Zhang, X. Jiang, L. Zhang, J. Wang, L. X. You, J. Y. Guan, D. X. Yang, Z. Wang, H. Liang, Z. Zhang, N. Zhou, X. Ma, T. Y. Chen, Q. Zhang, and J. W. Pan, Phys. Rev. Lett. 113, 190501 (2014), arXiv: 1407.8012.

  44. 44

    H. L. Yin, T. Y. Chen, Z. W. Yu, H. Liu, L. X. You, Y. H. Zhou, S. J. Chen, Y. Mao, M. Q. Huang, W. J. Zhang, H. Chen, M. J. Li, D. Nolan, F. Zhou, X. Jiang, Z. Wang, Q. Zhang, X. B. Wang, and J. W. Pan, Phys. Rev. Lett. 117, 190501 (2016), arXiv: 1606.06821.

  45. 45

    F. Xu, M. Curty, B. Qi, and H. K. Lo, New J. Phys. 15, 113007 (2013), arXiv: 1305.6965.

  46. 46

    M. Curty, F. Xu, W. Cui, C. C. W. Lim, K. Tamaki, and H. K. Lo, Nat. Commun. 5, 3732 (2014), arXiv: 1307.1081.

  47. 47

    C. Wang, X. T. Song, Z. Q. Yin, S. Wang, W. Chen, C. M. Zhang, G. C. Guo, and Z. F. Han, Phys. Rev. Lett. 115, 160502 (2015).

  48. 48

    C. Wang, Z. Q. Yin, S. Wang, W. Chen, G. C. Guo, and Z. F. Han, Optica 4, 1016 (2017).

  49. 49

    A. Ferenczi, and N. Lütkenhaus, Phys. Rev. A 85, 052310 (2012), arXiv: 1112.3396.

  50. 50

    Z. Zhang, J. Mower, D. Englund, F. N. C. Wong, and J. H. Shapiro, Phys. Rev. Lett. 112, 120506 (2014), arXiv: 1311.0825.

  51. 51

    P. J. Coles, E. M. Metodiev, and N. Lütkenhaus, Nat. Commun. 7, 11712 (2016), arXiv: 1510.01294.

  52. 52

    H. F. Chau, C. Wong, Q. Wang, and T. Huang, arXiv: 1608.08329 (2016).

  53. 53

    L. Dellantonio, A. S. Sorensen, and D. Bacco, Phys. Rev. A 98, 062301 (2018), arXiv: 1809.04405.

  54. 54

    B. P. Lanyon, M. Barbieri, M. P. Almeida, T. Jennewein, T. C. Ralph, K. J. Resch, G. J. Pryde, J. L. OBrien, A. Gilchrist, and A. G. White, Nat. Phys. 5, 134 (2009), arXiv: 0804.0272.

  55. 55

    M. Mičuda, M. Sedlák, I. Straka, M. Miková, M. Dušek, M. Ježek, and J. Fiurášek, Phys. Rev. Lett. 111, 160407 (2013), arXiv: 1306.1141.

  56. 56

    P. G. Kwiat, and H. Weinfurter, Phys. Rev. A 58, R2623 (1998).

  57. 57

    Y. B. Sheng, F. G. Deng, and G. L. Long, Phys. Rev. A 82, 032318 (2010), arXiv: 1103.0230.

  58. 58

    X. B. Wang, Phys. Rev. Lett. 94, 230503 (2005).

  59. 59

    H. Inamori, Algorithmica 34, 340 (2002).

  60. 60

    P. van Loock, Laser Photon. Rev. 5, 167 (2011), arXiv: 1002.4788.

  61. 61

    W. J. Zhang, L. X. You, H. Li, J. Huang, C. L. Lv, L. Zhang, X. Y. Liu, J. J. Wu, Z. Wang, and X. M. Xie, Sci. China-Phys. Mech. Astron. 60, 120314 (2017).

  62. 62

    X. Y. Lu, Q. Li, D. A. Westly, G. Moille, A. Singh, V. Anant, and K. Srinivasan, Nat. Phys. 15, 373 (2019), arXiv: 1805.04011.

  63. 63

    X. H. Li, and S. Ghose, Opt. Express 24, 18388 (2016), arXiv: 1601.02032.

  64. 64

    G. Y. Wang, B. C. Ren, F. G. Deng, and G. L. Long, Opt. Express 27, 8994 (2019).

  65. 65

    Q. Liu, G. Y. Wang, Q. Ai, M. Zhang, and F. G. Deng, Sci. Rep. 6, 22016 (2016), arXiv: 1511.00094.

  66. 66

    M. Wang, F. Yan, and T. Gao, Laser Phys. Lett. 15, 125206 (2018).

  67. 67

    X. H. Li, and S. Ghose, Phys. Rev. A 93, 022302 (2016), arXiv: 1601.02029.

  68. 68

    P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, Rev. Mod. Phys. 79, 135 (2007).

  69. 69

    H. F. Hofmann, K. Kojima, S. Takeuchi, and K. Sasaki, J. Opt. B-Quantum Semiclass. Opt. 5, 218 (2003).

  70. 70

    C. Zhu, and G. Huang, Opt. Express 19, 23364 (2011).

  71. 71

    I. C. Hoi, A. F. Kockum, T. Palomaki, T. M. Stace, B. Fan, L. Tornberg, S. R. Sathyamoorthy, G. Johansson, P. Delsing, and C. M. Wilson, Phys. Rev. Lett. 111, 053601 (2013), arXiv: 1207.1203.

  72. 72

    B. He, A. V. Sharypov, J. Sheng, C. Simon, and M. Xiao, Phys. Rev. Lett. 112, 133606 (2014), arXiv: 1401.1540.

  73. 73

    K. M. Beck, M. Hosseini, Y. Duan, and V. Vuleticí, Proc. Natl. Acad. Sci. USA 113, 9740 (2016), arXiv: 1512.02166.

  74. 74

    D. Tiarks, S. Schmidt, G. Rempe, and S. Dürr, Sci. Adv. 2, e1600036 (2016), arXiv: 1512.05740.

  75. 75

    J. Sinclair, D. Angulo, N. Lupu-Gladstein, K. Bonsma-Fisher, and A. M. Steinberg, arXiv: 1906.05151v1.

  76. 76

    B. C. Ren, H. R. Wei, M. Hua, T. Li, and F. G. Deng, Opt. Express 20, 24664 (2012), arXiv: 1207.0168.

  77. 77

    T. J. Wang, Y. Lu, and G. L. Long, Phys. Rev. A 86, 042337 (2012).

  78. 78

    G. Y. Wang, Q. Ai, B. C. Ren, T. Li, and F. G. Deng, Opt. Express 24, 28444 (2016), arXiv: 1611.03352.

  79. 79

    Q. Liu, and M. Zhang, Phys. Rev. A 91, 062321 (2015), arXiv: 1507.06108.

  80. 80

    T. J. Wang, and C. Wang, Sci. Rep. 6, 19497 (2016).

  81. 81

    X. L. Wang, X. D. Cai, Z. E. Su, M. C. Chen, D. Wu, L. Li, N. L. Liu, C. Y. Lu, and J. W. Pan, Nature 518, 516 (2015).

Download references

Author information

Correspondence to Lan Zhou.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant No. 11974189), the China Postdoctoral Science Foundation (Grant No. 2018M642293), the open research fund of Key Lab of Broadband Wireless Communication and Sensor Network Technology, Nanjing University of Posts and Telecommunications, Ministry of Education (Grant No. JZNY201908), and a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions. We thank Norbert Lütkenhaus very much for helpful discussions.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cui, Z., Zhong, W., Zhou, L. et al. Measurement-device-independent quantum key distribution with hyper-encoding. Sci. China Phys. Mech. Astron. 62, 110311 (2019) doi:10.1007/s11433-019-1438-6

Download citation

Keywords

  • quantum communication
  • measurement device-independent quantum key distribution
  • high-dimensional
  • hyper encoding

PACS number(s)

  • 03.67.Dd
  • 03.67.Hk
  • 42.81.Gs