Advertisement

Water sorption thermodynamics in glassy polymers endowed with hydrogen bonding interactions

  • G. Scherillo
  • P. La Manna
  • P. Musto
  • G. MensitieriEmail author
Article
  • 14 Downloads

Abstract

In this contribution, we review and critically compare the results of the analyses we have previously performed on water sorption thermodynamics in a series of polyimides. The experimental investigation was performed by combining gravimetric tests and in situ vibrational spectroscopy. A non-equilibrium theory, based on a compressible lattice framework accounting for the glassy state of the polymer and for the occurrence of hydrogen bonding interactions, has been used to interpret data. Information at a molecular level gained by vibrational spectroscopy has been used to tailor the model equations. The main features of water sorption thermodynamics are well captured, qualitatively and quantitatively, by the adopted model which displays a remarkable agreement with experimental results.

Keywords

water polyimides sorption thermodynamics 

References

  1. 1.
    G. M. Kontogeorgis, and G. K. Folas, Thermodynamic Models for Industrial Applications: From Classical and Advanced Mixing Rules to Association Theories (John Wiley & Sons Ltd, Chichester, 2010).CrossRefGoogle Scholar
  2. 2.
    C. G. Panayiotou, and K. S. Birdi, Handbook of Surface and Colloid Chemistry. 3rd ed (CRC Press Taylor and Francis Group, New York, 2009).Google Scholar
  3. 3.
    R. Iwamoto, and H. Kusanagi, J. Phys. Chem. A 119, 2885 (2015).CrossRefGoogle Scholar
  4. 4.
    C. Sammon, C. Mura, J. Yarwood, N. Everall, R. Swart, and D. Hodge, J. Phys. Chem. B 102, 3402 (1998).CrossRefGoogle Scholar
  5. 5.
    E. M. Davis, and Y. A. Elabd, J. Phys. Chem. B 117, 10629 (2013).CrossRefGoogle Scholar
  6. 6.
    L. S. Taylor, F. W. Langkilde, and G. Zografi, J. Pharm Sci. 90, 888 (2001).CrossRefGoogle Scholar
  7. 7.
    J. E. Glass, J. Phys. Chem. 72, 4450 (1968).CrossRefGoogle Scholar
  8. 8.
    Z. J. Zhao, Q. Wang, L. Zhang, and T. Wu, J. Phys. Chem. B 112, 7515 (2008).CrossRefGoogle Scholar
  9. 9.
    E. Chiessi, F. Cavalieri, and G. Paradossi, J. Phys. Chem. B 111, 2820 (2007).CrossRefGoogle Scholar
  10. 10.
    H. Eslami, and F. Muller-Plathe, J. Phys. Chem. B 115, 9720 (2011).CrossRefGoogle Scholar
  11. 11.
    G. Mensitieri, and M. Iannone, Modelling accelerated ageing in polymer composites. In Ageing of composites. R. Martin, ed (Wood-head Publishing Ltd., Cambridge, 2008) p. 224.CrossRefGoogle Scholar
  12. 12.
    W. J. Koros, and W. C. Madden. Transport Properties. In Encyclopedia of Polymer Science and Technology. 3rd ed. H. F. Mark (John Wiley & Sons, Hoboken, 2004) p. 291.Google Scholar
  13. 13.
    R. Grewal, W. Sweesy, and J. S. Jur, Willoughby Moisture Vapor Barrier Properties of Biopolymers for Packaging Materials (ACS, Washington, 2012), p. 271.Google Scholar
  14. 14.
    G. Mensitieri, G. Scherillo, M. Petretta, M. Galizia, P. La Manna, and P. Musto, Front. Chem. 2, 25 (2014).Google Scholar
  15. 15.
    G. Scherillo, M. Galizia, P. Musto, and G. Mensitieri, Ind. Eng. Chem. Res. 52, 8674 (2013).CrossRefGoogle Scholar
  16. 16.
    G. Scherillo, L. Sanguigno, M. Galizia, M. Lavorgna, P. Musto, and G. Mensitieri, Fluid Phase Equilib. 334, 166 (2012).CrossRefGoogle Scholar
  17. 17.
    G. Scherillo, L. Sanguigno, L. Sansone, E. Di Maio, M. Galizia, and G. Mensitieri, Fluid Phase Equilib. 313, 127 (2012).CrossRefGoogle Scholar
  18. 18.
    C. Panayiotou, M. Pantoula, E. Stefanis, I. Tsivintzelis, and I. G. Economou, Ind. Eng. Chem. Res. 43, 6592 (2004).CrossRefGoogle Scholar
  19. 19.
    C. Panayiotou, I. Tsivintzelis, and I. G. Economou, Ind. Eng. Chem. Res. 46, 2628 (2007).CrossRefGoogle Scholar
  20. 20.
    F. Doghieri, and G. C. Sarti, Macromolecules 29, 7885 (1996).ADSCrossRefGoogle Scholar
  21. 21.
    G. C. Sarti, and F. Doghieri, Chem. Eng. Sci. 53, 3435 (1998).CrossRefGoogle Scholar
  22. 22.
    L. M. Robeson, Curr. Opin. Solid State Mater. Sci. 4, 549 (1999).ADSCrossRefGoogle Scholar
  23. 23.
    A. de Nicola, A. Correa, G. Milano, P. La Manna, P. Musto, G. Mensitieri, and G. Scherillo, J. Phys. Chem. B 121, 3162 (2017).CrossRefGoogle Scholar
  24. 24.
    P. Musto, G. Mensitieri, M. Lavorgna, G. Scarinzi, and G. Scherillo, J. Phys. Chem. B 116, 1209 (2012).CrossRefGoogle Scholar
  25. 25.
    J. Seo, W. Jang, and H. Han, J. Appl. Polym. Sci. 113, 777 (2009).CrossRefGoogle Scholar
  26. 26.
    M. Karimi, W. Albrecht, M. Heuchel, M. Kish, J. Frahn, T. Weigel, D. Hofmann, H. Modarress, and A. Lendlein, J. Membrane Sci. 265, 1 (2005).CrossRefGoogle Scholar
  27. 27.
    I. Merdas, F. Thominette, and J. Verdu, Humid Ageing of Polyetherimide: Chemical and Physical Interactions with Water. In Polyimides and other high temperature polymer: Synthesis, characterization and applications, K. L. Mittal, ed (VSP, Utrecht, 2003) p. 255.Google Scholar
  28. 28.
    W. J. Koros, G. K. Fleming, S. M. Jordan, T. H. Kim, and H. H. Hoehn, Prog. Polym. Sci. 13, 339 (1988).CrossRefGoogle Scholar
  29. 29.
    K. I. Okamoto, N. Tanihara, H. Watanabe, K. Tanaka, H. A. Nakamura, Y. Kusuki, and K. Nakagawa, J. Polym. Sci. Pol. Phys. 30, 1223 (1992).ADSCrossRefGoogle Scholar
  30. 30.
    Y. Wang, L. Jiang, T. Matsuura, T. S. Chung, and S. H. Goh, J. Membrane Sci. 318, 217 (2008).CrossRefGoogle Scholar
  31. 31.
    Y. Wang, T. S. Chung, B. W. Neo, and M. Gruender, J. Membrane Sci. 378 339 (2011).CrossRefGoogle Scholar
  32. 32.
    S. Cotugno, D. Larobina, G. Mensitieri, P. Musto, and G. Ragosta, Polymer 42, 6431 (2001).CrossRefGoogle Scholar
  33. 33.
    G. Mensitieri, S. Cotugno, P. Musto, G. Ragosta, and L. Nicolais, Transport of Water in High T gPolymers: A Comparison between Interacting and Non-Interacting Systems. In Polyimides and other high temperature polymers: Synthesis, characterization and applications. K. L. Mittal, ed (VSP International Science Publishers, Utrecht, 2003) p. 267.Google Scholar
  34. 34.
    P. Musto, G. Ragosta, G. Mensitieri, and M. Lavorgna, Macromolecules 40, 9614 (2007).ADSCrossRefGoogle Scholar
  35. 35.
    I. Noda, A. E. Dowrey, C. Marcott, G. M. Story, and Y. Ozaki, Appl. Spectrosc. 54, 236 (2000).ADSCrossRefGoogle Scholar
  36. 36.
    I. C. Sanchez, and R. H. Lacombe, J. Phys. Chem. 80, 2352 (1976).CrossRefGoogle Scholar
  37. 37.
    I. C. Sanchez, and R. H. Lacombe, J. Phys. Chem. 80, 2568 (1976).CrossRefGoogle Scholar
  38. 38.
    I. C. Sanchez, and R. H. Lacombe, Macromolecules 11, 1145 (1978).ADSCrossRefGoogle Scholar
  39. 39.
    C. Panayiotou, and I. C. Sanchez, J. Phys. Chem. 95 10090 (1991).CrossRefGoogle Scholar
  40. 40.
    B. A. Veytsman, J. Phys. Chem. 94, 8499 (1990).CrossRefGoogle Scholar
  41. 41.
    B. Veytsman, J. Phys. Chem. B 102, 7515 (1998).CrossRefGoogle Scholar
  42. 42.
    J. M. Prausnitz, R. N. Lichtenthaler, and E. Gomes de Azevedo, Molecular Thermodynamics of Fluid-Phase Equilibria (Prentice Hall PTR, Upper Saddle River, 1998).Google Scholar
  43. 43.
    E. A. Guggenheim, Mixtures the Theory of the Equilibrium Properties of Some Simple Classes of Mixtures, Solutions and Alloys (Oxford University Press, Oxford, 1952).Google Scholar
  44. 44.
    C. Panayiotou, and J. H. Vera, Polym J 14, 681 (1982).CrossRefGoogle Scholar
  45. 45.
    S. S. You, K. P. Yoo, and C. S. Lee, Fluid Phase Equilib. 93, 193 (1994).CrossRefGoogle Scholar
  46. 46.
    M. Taimoori, and C. Panayiotou, Fluid Phase Equilib. 192, 155 (2001).CrossRefGoogle Scholar
  47. 47.
    M. S. Yeom, K. P. Yoo, B. H. Park, and C. S. Lee, Fluid Phase Equilib. 158–160, 143 (1999).CrossRefGoogle Scholar
  48. 48.
    T. Vlachou, I. Prinos, J. H. Vera, and C. G. Panayiotou, Ind. Eng. Chem. Res. 41, 1057 (2002).CrossRefGoogle Scholar
  49. 49.
    C. Panayiotou, J. Chem. ThermoDyn. 35, 349 (2003).CrossRefGoogle Scholar
  50. 50.
    I. Tsivintzelis, and G. M. Kontogeorgis, Fluid Phase Equilib. 280, 100 (2009).CrossRefGoogle Scholar
  51. 51.
    F. Doghieri, M. Quinzi, D. G. Rethwisch, and G. C. Sarti, Predicting Gas Solubility in Glassy Polymers through Nonequilibrium EOS. In Advanced Materials for Membrane Separations, I. Pinnau, and B. D. Freeman, ed (ACS, Washington, 2004). p. 74.CrossRefGoogle Scholar
  52. 52.
    M. G. De Angelis, F. Doghieri, G. C. Sarti, and B. D. Freeman, Desalination 193, 82 (2006).CrossRefGoogle Scholar
  53. 53.
    A. Fredenslund, and M. J. Sorensen, Group Contribution Estimation Methods. In Models for Thermodynamic and Phase Equilibria Calculations, S. I. Sandler, ed (Marcel Dekker, New York, 1994). p. 287.Google Scholar
  54. 54.
    H. Ishida, S. T. Wellinghoff, E. Baer, and J. L. Koenig, Macromolecules 13, 826 (1980).ADSCrossRefGoogle Scholar
  55. 55.
    A. K. Saini, C. M. Carlin, and H. H. Patterson, J. Polym. Sci. A Polym. Chem. 30, 419 (1992).ADSCrossRefGoogle Scholar
  56. 56.
    J. F. Waters, W. R. Likavec, and W. M. Ritchey, J. Appl. Polym. Sci. 53, 59 (1994).CrossRefGoogle Scholar
  57. 57.
    R. Iwamoto, and T. Matsuda, J. Polym. Sci. B Polym. Phys. 43, 777 (2005).ADSCrossRefGoogle Scholar
  58. 58.
    C. Andreani, C. Corsaro, D. Mallamace, G. Romanelli, R. Senesi, and F. Mallamace, Sci. China-Phys. Mech. Astron. 62, 107008 (2019).ADSCrossRefGoogle Scholar
  59. 59.
    I. Zhovtobriukh, B. J. C. Cabral, C. Corsaro, D. Mallamace, and L. G. M. Pettersson, Sci. China-Phys. Mech. Astron. 62, 107010 (2019).ADSCrossRefGoogle Scholar
  60. 60.
    A. Fredenslund, R. L. Jones, and J. M. Prausnitz, AIChE J. 21, 1086 (1975).CrossRefGoogle Scholar
  61. 61.
    P. Musto, M. Galizia, P. La Manna, M. Pannico, and G. Mensitieri, Front. Chem. 2, 1 (2014).CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • G. Scherillo
    • 1
  • P. La Manna
    • 2
  • P. Musto
    • 2
  • G. Mensitieri
    • 1
    • 2
    Email author
  1. 1.Department of Chemical, Materials and Production EngineeringUniversity of Naples Federico IINaplesItaly
  2. 2.Institute for Polymers, Composites and BiomaterialsNational Research Council of ItalyPozzuoli (Na)Italy

Personalised recommendations