Advertisement

Dissipative preparation of Bell states with parallel quantum Zeno dynamics

  • Chong Yang
  • DongXiao Li
  • XiaoQiang ShaoEmail author
Article

Abstract

We propose a new mechanism, parallel quantum Zeno dynamics, to dissipatively prepare all Bell entangled states of the two-qubit system in the context of cavity quantum electrodynamics. This mechanism can provide two transition channels between ground states and two different dark states simultaneously, which efficiently speeds up the stabilization of the entanglement and suppresses the adverse influence of surrounding environments. In addition, there is no need for the initialization of quantum states and the Clauser-Horne-Shimony-Holt inequality can be violated in a finite temperature bath. The experimental feasibility is also studied by the state-of-the-art technique and a high fidelity about 99% can be achieved.

Keywords

Bell states quantum Zeno dynamics quantum dissipation 

PACS number(s)

03.65.Ud 03.65.Xp 42.50.Pq 

References

  1. 1.
    A. Peres, Quantum Theory: Concepts and Methods (Academic, New York, 1993), p. 423.zbMATHGoogle Scholar
  2. 2.
    H. P. Breuer, and F. Petruccione, The Theory of Open Quantum Systems (Oxford University Press, Oxford, 2007).zbMATHGoogle Scholar
  3. 3.
    J. Zhou, B. J. Liu, Z. P. Hong, and Z. Y. Xue, Sci. China-Phys. Mech. Astron. 61, 010312 (2018), arXiv: 1705.08852.ADSGoogle Scholar
  4. 4.
    G. F. Xu, Sci. China-Phys. Mech. Astron. 61, 010331 (2018).ADSGoogle Scholar
  5. 5.
    C. Wang, and Z. Guo, Europhy. Lett. 124, 40003 (2018).ADSGoogle Scholar
  6. 6.
    L. Zhang, N. Chen, C. Zhu, and C. Pei, Europhy. Lett. 125, 40002 (2019).ADSGoogle Scholar
  7. 7.
    F. Gao, S. J. Qin, W. Huang, and Q. Y. Wen, Sci. China-Phys. Mech. Astron. 62, 070301 (2019).Google Scholar
  8. 8.
    W. G. Unruh, Phys. Rev. A 51, 992 (1995).ADSGoogle Scholar
  9. 9.
    L. Viola, E. Knill, and S. Lloyd, Phys. Rev. Lett. 82, 2417 (1999).ADSMathSciNetGoogle Scholar
  10. 10.
    E. Knill, R. Laflamme, and L. Viola, Phys. Rev. Lett. 84, 2525 (2000).ADSMathSciNetGoogle Scholar
  11. 11.
    M. B. Plenio, and S. F. Huelga, Phys. Rev. Lett. 88, 197901 (2002).ADSGoogle Scholar
  12. 12.
    M. J. Kastoryano, F. Reiter, and A. S. Sørensen, Phys. Rev. Lett. 106, 090502 (2011), arXiv: 1011.1441.ADSGoogle Scholar
  13. 13.
    X. Q. Shao, T. Y. Zheng, C. H. Oh, and S. Zhang, Phys. Rev. A 89, 012319 (2014), arXiv: 1312.0188.ADSGoogle Scholar
  14. 14.
    L. T. Shen, R. X. Chen, Z. B. Yang, H. Z. Wu, and S. B. Zheng, Opt. Lett. 39, 6046 (2014).ADSGoogle Scholar
  15. 15.
    P. Zanardi, J. Marshall, and L. Campos Venuti, Phys. Rev. A 93, 022312 (2016), arXiv: 1506.04311.ADSGoogle Scholar
  16. 16.
    X. Q. Shao, Phys. Rev. A 98, 042310 (2018).ADSGoogle Scholar
  17. 17.
    C. Ahn, A. C. Doherty, and A. J. Landahl, Phys. Rev. A 65, 042301 (2002).ADSGoogle Scholar
  18. 18.
    Y. L. Len, and H. K. Ng, Phys. Rev. A 98, 022307 (2018).ADSGoogle Scholar
  19. 19.
    D. X. Li, and X. Q. Shao, Phys. Rev. A 98, 062338 (2018).ADSGoogle Scholar
  20. 20.
    C. Wang, and J. M. Gertler, arXiv: 1809.03571.Google Scholar
  21. 21.
    Y. Matsuzaki, V. M. Bastidas, Y. Takeuchi, W. J. Munro, and S. Saito, arXiv: 1810.02995.Google Scholar
  22. 22.
    D. X. Li, and X. Q. Shao, Phys. Rev. A 99, 032348 (2019).ADSGoogle Scholar
  23. 23.
    R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, Rev. Mod. Phys. 81, 865 (2009).ADSGoogle Scholar
  24. 24.
    Y. B. Sheng, and L. Zhou, Sci. Bull. 62, 1025 (2017).Google Scholar
  25. 25.
    F. G. Deng, G. L. Long, and X. S. Liu, Phys. Rev. A 68, 042317 (2003).ADSGoogle Scholar
  26. 26.
    F. Z. Wu, G. J. Yang, H. B. Wang, J. Xiong, F. Alzahrani, A. Hobiny, and F. G. Deng, Sci. China-Phys. Mech. Astron. 60, 120313 (2017).ADSGoogle Scholar
  27. 27.
    S. S. Chen, L. Zhou, W. Zhong, and Y. B. Sheng, Sci. China-Phys. Mech. Astron. 61, 090312 (2018).Google Scholar
  28. 28.
    B. C. Ren, and F. G. Deng, Opt. Express 25, 10863 (2017).ADSGoogle Scholar
  29. 29.
    W. Qin, X. Wang, A. Miranowicz, Z. Zhong, and F. Nori, Phys. Rev. A 96, 012315 (2017), arXiv: 1608.04195.ADSGoogle Scholar
  30. 30.
    B. C. Ren, A. H. Wang, A. Alsaedi, T. Hayat, and F. G. Deng, Annalen Phys. 530, 1800043 (2018).ADSMathSciNetGoogle Scholar
  31. 31.
    J. L. Wu, and S. L. Su, Europhy. Lett. 126, 30001 (2019).Google Scholar
  32. 32.
    S. B. Zheng, and G. C. Guo, Phys. Rev. Lett. 85, 2392 (2000).ADSGoogle Scholar
  33. 33.
    R. Raussendorf, and H. J. Briegel, Phys. Rev. Lett. 86, 5188 (2001).ADSGoogle Scholar
  34. 34.
    F. Benatti, R. Floreanini, and M. Piani, Phys. Rev. Lett. 91, 070402 (2003).ADSGoogle Scholar
  35. 35.
    J. H. An, S. J. Wang, and H. G. Luo, Phys. A-Stat. Mech. Appl. 382, 753 (2007).Google Scholar
  36. 36.
    B. Misra, and E. C. G. Sudarshan, J. Math. Phys. 18, 756 (1977).ADSGoogle Scholar
  37. 37.
    J. Bernu, S. Deléglise, C. Sayrin, S. Kuhr, I. Dotsenko, M. Brune, J. M. Raimond, and S. Haroche, Phys. Rev. Lett. 101, 180402 (2008), arXiv: 0809.4388.ADSGoogle Scholar
  38. 38.
    W. M. Itano, D. J. Heinzen, J. J. Bollinger, and D. J. Wineland, Phys. Rev. A 41, 2295 (1990).ADSGoogle Scholar
  39. 39.
    E. W. Streed, J. Mun, M. Boyd, G. K. Campbell, P. Medley, W. Ketterle, and D. E. Pritchard, Phys. Rev. Lett. 97, 260402 (2006).ADSGoogle Scholar
  40. 40.
    P. Facchi, and S. Pascazio, Phys. Rev. Lett. 89, 080401 (2002).ADSMathSciNetGoogle Scholar
  41. 41.
    P. Facchi, and S. Pascazio, J. Phys. A-Math. Theor. 41, 493001 (2008), arXiv: 0903.3297.Google Scholar
  42. 42.
    A. Luis, Phys. Rev. A 63, 052112 (2001).ADSGoogle Scholar
  43. 43.
    G. Barontini, L. Hohmann, F. Haas, J. Esteve, and J. Reichel, Science 349, 1317 (2015), arXiv: 1601.07347.ADSMathSciNetGoogle Scholar
  44. 44.
    Y. Lin, J. P. Gaebler, F. Reiter, T. R. Tan, R. Bowler, Y. Wan, A. Keith, E. Knill, S. Glancy, K. Coakley, A. S. Sørensen, D. Leibfried, and D. J. Wineland, Phys. Rev. Lett. 117, 140502 (2016), arXiv: 1603.03848.ADSGoogle Scholar
  45. 45.
    X. Q. Shao, L. Chen, S. Zhang, and K. H. Yeon, J. Phys. B-At. Mol. Opt. Phys. 42, 165507 (2009).ADSGoogle Scholar
  46. 46.
    L. Bretheau, P. Campagne-Ibarcq, E. Flurin, F. Mallet, and B. Huard, Science 348, 776 (2015), arXiv: 1505.04238.ADSMathSciNetGoogle Scholar
  47. 47.
    X. Q. Shao, J. H. Wu, and X. X. Yi, Phys. Rev. A 95, 062339 (2017), arXiv: 1705.03614.ADSGoogle Scholar
  48. 48.
    D. X. Li, X. Q. Shao, J. H. Wu, and X. X. Yi, Opt. Lett. 42, 3904 (2017).ADSGoogle Scholar
  49. 49.
    D. X. Li, X. Q. Shao, J. H. Wu, and X. X. Yi, Opt. Lett. 43, 1639 (2018), arXiv: 1803.02167.ADSGoogle Scholar
  50. 50.
    J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, Phys. Rev. Lett. 23, 880 (1969).ADSGoogle Scholar
  51. 51.
    P. Maunz, T. Puppe, I. Schuster, N. Syassen, P. W. H. Pinkse, and G. Rempe, Nature 428, 50 (2004).ADSGoogle Scholar
  52. 52.
    S. Rebić, J. Twamley, and G. J. Milburn, Phys. Rev. Lett. 103, 150503 (2009), arXiv: 0902.0402.ADSGoogle Scholar
  53. 53.
    H. Zheng, D. J. Gauthier, and H. U. Baranger, Phys. Rev. Lett. 107, 223601 (2011), arXiv: 1107.0309.ADSGoogle Scholar
  54. 54.
    J. S. Douglas, H. Habibian, C. L. Hung, A. V. Gorshkov, H. J. Kimble, and D. E. Chang, Nat. Photon 9, 326 (2015), arXiv: 1312.2435.ADSGoogle Scholar
  55. 55.
    M. Schiró, C. Joshi, M. Bordyuh, R. Fazio, J. Keeling, and H. E. Türeci, Phys. Rev. Lett. 116, 143603 (2016), arXiv: 1503.04456.ADSGoogle Scholar
  56. 56.
    K. M. Birnbaum, A. Boca, R. Miller, A. D. Boozer, T. E. Northup, and H. J. Kimble, Nature 436, 87 (2005).ADSGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Center for Quantum Sciences and School of PhysicsNortheast Normal UniversityChangchunChina
  2. 2.Center for Advanced Optoelectronic Functional Materials Research, and Key Laboratory for UV Light-Emitting Materials and Technology of Ministry of EducationNortheast Normal UniversityChangchunChina

Personalised recommendations