Advertisement

Wide bandwidth acoustic transmission via coiled-up metamaterial with impedance matching layers

  • Xiao Jia
  • Yang Li
  • Yinghao Zhou
  • Minghui HongEmail author
  • Ming YanEmail author
Article

Abstract

Many acoustic metamaterials suffer from a narrow bandwidth transmission because of the impedance mismatch at the airmetamaterial interface. In this paper, a two-dimensional impedance-matched metamaterial with broadband transmission performance is investigated. The impedance matching layer is introduced for a gradient variation of effective impedance from the inlet of the unit to the outlet. The effective medium theory and corresponding effective model are used to explain the underlying mechanism. The improved energy transmission of our designs is demonstrated by experiment and numerical simulation within a broad frequency bandwidth over 6 kHz. Our impedance-matched design can be used to enhance sound absorption, which is expected to present improved acoustic performance in the applications of acoustic damper and muffler.

Keywords

general linear acoustics structural acoustics and vibration acoustical measurements and instrumentation wavestructure interactions 

References

  1. 1.
    A. Nemati, Q. Wang, M. Hong, and J. Teng, Opto-Electron. Adv. 1, 18000901 (2018).CrossRefGoogle Scholar
  2. 2.
    Z. Liu, C. T. Chan, and P. Sheng, Phys. Rev. B 71, 014103 (2005).ADSCrossRefGoogle Scholar
  3. 3.
    J. Li, and C. T. Chan, Phys. Rev. E 70, 055602 (2004).ADSCrossRefGoogle Scholar
  4. 4.
    T. Brunet, A. Merlin, B. Mascaro, K. Zimny, J. Leng, O. Poncelet, C. Aristégui, and O. Mondain-Monval, Nat. Mater. 14, 384 (2015).ADSCrossRefGoogle Scholar
  5. 5.
    S. H. Lee, C. M. Park, Y. M. Seo, Z. G. Wang, and C. K. Kim, Phys. Rev. Lett. 104, 054301 (2010), arXiv: 0901.2772.ADSCrossRefGoogle Scholar
  6. 6.
    K. Song, S. H. Lee, K. Kim, S. Hur, and J. Kim, Sci. Rep. 4, 4165 (2014).CrossRefGoogle Scholar
  7. 7.
    M. Molerón, M. Serra-Garcia, and C. Daraio, New J. Phys. 18, 033003 (2016), arXiv: 1511.05594.ADSCrossRefGoogle Scholar
  8. 8.
    R. Al Jahdali, and Y. Wu, Appl. Phys. Lett. 108, 031902 (2016).ADSCrossRefGoogle Scholar
  9. 9.
    J. Lan, Y. Li, and X. Liu, Appl. Phys. Lett. 111, 263501 (2017).ADSCrossRefGoogle Scholar
  10. 10.
    N. Kaina, F. Lemoult, M. Fink, and G. Lerosey, Nature 525, 77 (2015).ADSCrossRefGoogle Scholar
  11. 11.
    F. Qin, and M. H. Hong, Sci. China-Phys. Mech. Astron. 60, 044231 (2017).ADSCrossRefGoogle Scholar
  12. 12.
    M. Yang, and S. Ping, Annu. Rev. Mater. Res. 47, 083114 (2017).Google Scholar
  13. 13.
    X. Jia, Y. Li, Y. Zhou, M. Yan, and M. Hong, Appl. Phys. Express 11, 117301 (2018).ADSCrossRefGoogle Scholar
  14. 14.
    K. Song, K. Kim, S. Hur, J. H. Kwak, J. Park, J. R. Yoon, and J. Kim, Sci. Rep. 4, 7421 (2014).CrossRefGoogle Scholar
  15. 15.
    J. Li, C. Shen, A. Díaz-Rubio, S. A. Tretyakov, and S. A. Cummer, Nat. Commun. 9, 1342 (2018), arXiv: 1711.09840.ADSCrossRefGoogle Scholar
  16. 16.
    N. Jiménez, T. J. Cox, V. Romero-García, and J. P. Groby, Sci. Rep. 7, 5389 (2017).ADSCrossRefGoogle Scholar
  17. 17.
    S. Qi, M. Oudich, Y. Li, and B. Assouar, Appl. Phys. Lett. 108, 263501 (2016).ADSCrossRefGoogle Scholar
  18. 18.
    Y. Li, B. Liang, X. Zou, and J. Cheng, Appl. Phys. Lett. 103, 063509 (2013).ADSCrossRefGoogle Scholar
  19. 19.
    Y. Li, B. Liang, X. Tao, X. Zhu, X. Zou, and J. Cheng, Appl. Phys. Lett. 101, 233508 (2012).ADSCrossRefGoogle Scholar
  20. 20.
    Z. Liang, and J. Li, Phys. Rev. Lett. 108, 114301 (2012).ADSCrossRefGoogle Scholar
  21. 21.
    Y. Xie, W. Wang, H. Chen, A. Konneker, B. I. Popa, and S. A. Cummer, Nat. Commun. 5, 5553 (2014), arXiv: 1406.6306.ADSCrossRefGoogle Scholar
  22. 22.
    K. Tang, C. Qiu, M. Ke, J. Lu, Y. Ye, and Z. Liu, Sci. Rep. 4, 6517 (2014), arXiv: 1406.3552.ADSCrossRefGoogle Scholar
  23. 23.
    S. Qi, Y. Li, and B. Assouar, Phys. Rev. Appl. 7, 054006 (2017).ADSCrossRefGoogle Scholar
  24. 24.
    X. Zhu, K. Li, P. Zhang, J. Zhu, J. Zhang, C. Tian, and S. Liu, Nat. Commun. 7, 11731 (2016).ADSCrossRefGoogle Scholar
  25. 25.
    K. Li, B. Liang, J. Yang, J. Yang, and J. Cheng, Appl. Phys. Lett. 110, 203504 (2017).ADSCrossRefGoogle Scholar
  26. 26.
    Y. Ding, E. C. Statharas, K. Yao, and M. Hong, Appl. Phys. Lett. 110, 241903 (2017).ADSCrossRefGoogle Scholar
  27. 27.
    Z. Jia, J. Li, C. Shen, Y. Xie, and S. A. Cummer, J. Appl. Phys. 123, 025101 (2018).ADSCrossRefGoogle Scholar
  28. 28.
    W. Wang, Y. Xie, A. Konneker, B. I. Popa, and S. A. Cummer, Appl. Phys. Lett. 105, 101904 (2014).ADSCrossRefGoogle Scholar
  29. 29.
    C. Liu, J. Luo, and Y. Lai, Phys. Rev. Mater. 2, 045201 (2018).ADSCrossRefGoogle Scholar
  30. 30.
    D. R. Smith, S. Schultz, P. Markoš, and C. M. Soukoulis, Phys. Rev. B 65, 195104 (2002).ADSCrossRefGoogle Scholar
  31. 31.
    V. Fokin, M. Ambati, C. Sun, and X. Zhang, Phys. Rev. B 76, 144302 (2007).ADSCrossRefGoogle Scholar
  32. 32.
    X. Ni, Y. Wu, Z. G. Chen, L. Y. Zheng, Y. L. Xu, P. Nayar, X. P. Liu, M. H. Lu, and Y. F. Chen, Sci. Rep. 4, 7038 (2014).CrossRefGoogle Scholar
  33. 33.
    J. Allard, and N. Atalla, Propagation of Sound in Porous Media: Modelling Sound Absorbing Materials (John Wiley & Sons, Hoboken, 2009).CrossRefGoogle Scholar
  34. 34.
    J. Zhu, J. Christensen, J. Jung, L. Martin-Moreno, X. Yin, L. Fok, X. Zhang, and F. J. Garcia-Vidal, Nat. Phys. 7, 52 (2011).CrossRefGoogle Scholar
  35. 35.
    B. H. Lu, H. B. Lan, and H. Z. Liu, Opto-Electron. Adv. 1, 17000401 (2018).CrossRefGoogle Scholar
  36. 36.
    K. Xu, Y. Lu, and K. Takei, Adv. Mater. Technol. 12, 1800628 (2019).CrossRefGoogle Scholar
  37. 37.
    Z. Liang, T. Feng, S. Lok, F. Liu, K. B. Ng, C. H. Chan, J. Wang, S. Han, S. Lee, and J. Li, Sci. Rep. 3, 1614 (2013), arXiv: 1212.0782.ADSCrossRefGoogle Scholar
  38. 38.
    H. Ge, M. Yang, C. Ma, M. H. Lu, Y. F. Chen, N. Fang, and P. Sheng, Natl. Sci. Rev. 5, 159 (2018).CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Materials Science and Engineering, and Shenzhen Key Engineering Lab for Powder Production for 3D Printing of Aircraft EnginesSouthern University of Science and TechnologyShenzhenChina
  2. 2.Department of Electrical and Computer EngineeringNational University of SingaporeSingaporeSingapore

Personalised recommendations