Advertisement

Smoothed particle hydrodynamics (SPH) for modeling fluid-structure interactions

  • Moubin LiuEmail author
  • Zhilang Zhang
Invited Review
  • 55 Downloads

Abstract

Fluid-structure interaction (FSI) is a class of mechanics-related problems with mutual dependence between the fluid and structure parts and it is observable nearly everywhere, in natural phenomena to many engineering systems. The primary challenges in developing numerical models with conventional grid-based methods are the inherent nonlinearity and time-dependent nature of FSI, together with possible large deformations and moving interfaces. Smoothed particle hydrodynamics (SPH) method is a truly Lagrangian and meshfree particle method that conveniently treats large deformations and naturally captures rapidly moving interfaces and free surfaces. Since its invention, the SPH method has been widely applied to study different problems in engineering and sciences, including FSI problems. This article presents a review of the recent developments in SPH based modeling techniques for solving FSI-related problems. The basic concepts of SPH along with conventional and higher order particle approximation schemes are first introduced. Then, the implementation of FSI in a pure SPH framework and the hybrid approaches of SPH with other grid-based or particle-based methods are discussed. The SPH models of FSI problems with rigid, elastic and flexible structures, with granular materials, and with extremely intensive loadings are demonstrated. Some discussions on several key techniques in SPH including the balance of accuracy, stability and efficiency, the treatment of material interface, the coupling of SPH with other methods, and the particle regularization and adaptive particle resolution are provided as concluding marks.

smoothed particle hydrodynamics (SPH) fluid-structure interaction (FSI) computational fluid dynamics (CFD) computational solid dynamics (CSD) 

References

  1. 1.
    M. B. Liu, J. R. Shao, and H. Q. Li, Int. J. Numer. Meth. Fluids 74, 684 (2014).CrossRefGoogle Scholar
  2. 2.
    F. R. Ming, A. M. Zhang, H. Cheng, and P. N. Sun, Ocean Eng. 165, 336 (2016).CrossRefGoogle Scholar
  3. 3.
    J. R. Wright, and J. E. Cooper, Introduction to Aircraft Aeroelasticity and Loads (Wiley, Weinheim, 2007).CrossRefGoogle Scholar
  4. 4.
    W. Shen, and Y. P. Zhao, J. Appl. Mech. 85, 031003 (2018).ADSCrossRefGoogle Scholar
  5. 5.
    M. B. Liu, and G. R. Liu, Arch. Comput. Methods Eng. 17, 25 (2010).MathSciNetCrossRefGoogle Scholar
  6. 6.
    H.-J. Bungartz, Fluid-structure Interaction: Modelling, Simulation, Optimization (Springer-Verlag, Heidelberg, 2006).CrossRefGoogle Scholar
  7. 7.
    J. F. Sigrist, Fluid-Structure Interaction: An Introduction to Finite Element Coupling (Wiley, Weinheim, 2015).zbMATHCrossRefGoogle Scholar
  8. 8.
    Y. C. Fung, An Introduction to the Theory of Aeroelasticity (John Wiley & Sons, Ltd., Hoboken, 1994).Google Scholar
  9. 9.
    M. B. Liu, and G. R. Liu, Particle Methods for Multi-Scale and Multi-Physics (World Scientific, Singapore, 2016).zbMATHCrossRefGoogle Scholar
  10. 10.
    M. Matsumoto, H. Shirato, T. Yagi, R. Shijo, A. Eguchi, and H. Tamaki, J. Wind Eng. Ind. Aerod. 91, 1547 (2003).CrossRefGoogle Scholar
  11. 11.
    J. R. Shao, H. Q. Li, G. R. Liu, and M. B. Liu, Comput. Struct. 100–101, 18 (2012).CrossRefGoogle Scholar
  12. 12.
    M. Luo, C. G. Koh, and W. Bai, Ocean Eng. 120, 52 (2016).CrossRefGoogle Scholar
  13. 13.
    H. J.-P. Morand, and R. Ohayon, Fluid-Structure Interaction: Applied Numerical Methods (Wiley, Weinheim, 1995).zbMATHGoogle Scholar
  14. 14.
    E. H. Dowell, and K. C. Hall, Annu. Rev. Fluid Mech. 33, 445 (2001).ADSCrossRefGoogle Scholar
  15. 15.
    W. Shyy, H. S. Udaykumar, M. M. Rao, and R. W. Smith, Computational Fluid Dynamics with Moving Boundaries (Dover Publications, New York, 2007).Google Scholar
  16. 16.
    G. Hou, J. Wang, and A. Layton, Commun. Commut. Phys. 12, 337 (2012).CrossRefGoogle Scholar
  17. 17.
    G. R. Liu, and M. B. Liu, Smoothed Particle Hydrodynamics: A Meshfree Particle Method (World Scientific, Singapore, 2003).zbMATHCrossRefGoogle Scholar
  18. 18.
    P. Brandimarte, Finite-Difference Methods for Partial Differential Equations (Wiley, Weinheim, 1960).Google Scholar
  19. 19.
    T. Liszka, and J. Orkisz, Comput. Struct. 11, 83 (1980).CrossRefGoogle Scholar
  20. 20.
    T. N. Narasimhan, and P. A. Witherspoon, Water Resour. Res. 12, 57 (1976).ADSCrossRefGoogle Scholar
  21. 21.
    J. Kim, D. Kim, and H. Choi, J. Comput. Phys. 171, 132 (2001).ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    I. Demirdzic, and M. Peric, Int. J. Numer. Meth. Fluids 10, 771 (1990).CrossRefGoogle Scholar
  23. 23.
    P. Jenny, S. H. Lee, and H. A. Tchelepi, J. Comput. Phys. 187, 47 (2003).ADSCrossRefGoogle Scholar
  24. 24.
    G. Strang, G. J. Fix, and D. S. Griffin, J. Appl. Mech. 41, 62 (1974).ADSCrossRefGoogle Scholar
  25. 25.
    J. R. Cho, and H. W. Lee, Comput. Methods Appl. Mech. Eng. 193, 2581 (2004).ADSCrossRefGoogle Scholar
  26. 26.
    S. Mitra, P. P. Upadhyay, and K. P. Sinhamahapatra, Int. J. Numer. Meth. Fluids 56, 1625 (2008).CrossRefGoogle Scholar
  27. 27.
    K. Walayat, Z. Zhang, K. Usman, J. Chang, and M. Liu, Phys. Fluids 30, 103301 (2018).ADSCrossRefGoogle Scholar
  28. 28.
    D. Wan, and S. Turek, Int. J. Numer. Meth. Fluids 51, 531 (2006).CrossRefGoogle Scholar
  29. 29.
    D. Wan, and S. Turek, J. Comput. Appl. Math. 203, 561 (2007).ADSMathSciNetCrossRefGoogle Scholar
  30. 30.
    O. C. Zienkiewicz, and R. L. Taylor, The Finite Element Method (McGraw-Hill, New York, 2000).zbMATHGoogle Scholar
  31. 31.
    D. Liu, and P. Lin, J. Comput. Phys. 227, 3921 (2008).ADSCrossRefGoogle Scholar
  32. 32.
    A. E. P. Veldman, J. Gerrits, R. Luppes, J. A. Helder, and J. P. B. Vreeburg, J. Comput. Phys. 224, 82 (2007).ADSMathSciNetCrossRefGoogle Scholar
  33. 33.
    C. W. Hirt, and B. D. Nichols, J. Comput. Phys. 39, 201 (1981).ADSCrossRefGoogle Scholar
  34. 34.
    M. Sussman, P. Smereka, and S. Osher, J. Comput. Phys. 114, 146 (1994).ADSCrossRefGoogle Scholar
  35. 35.
    D. Peng, B. Merriman, S. Osher, H. Zhao, and M. Kang, J. Comput. Phys. 155, 410 (1999).ADSMathSciNetCrossRefGoogle Scholar
  36. 36.
    C. Farhat, and M. Lesoinne, Comput. Methods Appl. Mech. Eng. 182, 499 (2000).ADSCrossRefGoogle Scholar
  37. 37.
    M. Souli, A. Ouahsine, and L. Lewin, Comput. Methods Appl. Mech. Eng. 190, 659 (2000).ADSCrossRefGoogle Scholar
  38. 38.
    K. J. Bathe, and H. Zhang, Comput. Struct. 87, 604 (2009).CrossRefGoogle Scholar
  39. 39.
    O. M. Faltinsen, and A. N. Timokha, J. Fluid Mech. 665, 457 (2010).ADSMathSciNetCrossRefGoogle Scholar
  40. 40.
    M. A. Noorian, R. D. Firouz-Abadi, and H. Haddadpour, Int. J. Numer. Meth. Engng. 89, 1652 (2012).CrossRefGoogle Scholar
  41. 41.
    G. Fourey, C. Hermange, D. Le Touzé, and G. Oger, Comput. Phys. Commun. 217, 66 (2017).ADSMathSciNetCrossRefGoogle Scholar
  42. 42.
    A. W. Vreman, J. Fluid Mech. 796, 40 (2016).ADSMathSciNetCrossRefGoogle Scholar
  43. 43.
    A. W. Vreman, A Staggered Overset Grid Method for Resolved Simulation of Incompressible Flow Around Moving Spheres (Academic Press Professional, Inc., New York, 2017).CrossRefGoogle Scholar
  44. 44.
    W. K. Liu, Y. Chen, S. Jun, J. S. Chen, T. Belytschko, C. Pan, R. A. Uras, and C. T. Chang, Arch. Comput. Methods Eng. 3, 3 (1996).CrossRefGoogle Scholar
  45. 45.
    S. F. Li, and W. K. Liu, Appl. Mech. Rev. 55, 1 (2002).ADSCrossRefGoogle Scholar
  46. 46.
    G. R. Liu, and Y. T. Gu, An Introduction to Meshfree Methods and Their Programming (Springer, Heidelberg, 2005).Google Scholar
  47. 47.
    R. A. Gingold, and J. J. Monaghan, Mon. Not. R. Astron. Soc. 181, 375 (1977).ADSCrossRefGoogle Scholar
  48. 48.
    L. B. Lucy, Astron. J. 82, 1013 (1977).ADSCrossRefGoogle Scholar
  49. 49.
    J. J. Monaghan, Annu. Rev. Fluid Mech. 44, 323 (2012).ADSCrossRefGoogle Scholar
  50. 50.
    S. Koshizuka, and Y. Oka, Nucl. Sci. Eng. 123, 421 (1996).ADSCrossRefGoogle Scholar
  51. 51.
    S. Koshizuka, Comput. Fluid Dyn. J. 4, 29 (1995).Google Scholar
  52. 52.
    S. Shao, C. Ji, D. I. Graham, D. E. Reeve, P. W. James, and A. J. Chadwick, Coast. Eng. 53, 723 (2006).CrossRefGoogle Scholar
  53. 53.
    Z. Chen, Z. Zong, M. B. Liu, and H. T. Li, Int. J. Numer. Meth. Fluids 73, 813 (2013).CrossRefGoogle Scholar
  54. 54.
    A. J. Chorin, Math. Comp. 22, 745 (1968).MathSciNetCrossRefGoogle Scholar
  55. 55.
    J. J. Monaghan, Annu. Rev. Astron. Astrophys. 30, 543 (1992).ADSCrossRefGoogle Scholar
  56. 56.
    A. Zhang, P. Sun, F. Ming, and A. Colagrossi, J. Hydrodyn. 29, 187 (2017).ADSCrossRefGoogle Scholar
  57. 57.
    D. Violeau, and B. D. Rogers, J. Hydraul. Res. 254, 1 (2016).CrossRefGoogle Scholar
  58. 58.
    H. Gotoh, and A. Khayyer, Coast. Eng. J. 60, 79 (2018).CrossRefGoogle Scholar
  59. 59.
    M. S. Shadloo, G. Oger, and D. Le Touzé, Comput. Fluids 136, 11 (2016).MathSciNetCrossRefGoogle Scholar
  60. 60.
    Z. B. Wang, R. Chen, H. Wang, Q. Liao, X. Zhu, and S. Z. Li, Appl. Math. Model. 40, 9625 (2016).MathSciNetCrossRefGoogle Scholar
  61. 61.
    J. J. Monaghan, J. Comput. Phys. 110, 399 (1994).ADSCrossRefGoogle Scholar
  62. 62.
    M. B. Liu, G. R. Liu, K. Y. Lam, and Z. Zong, Comput. Mech. 30, 106 (2003).CrossRefGoogle Scholar
  63. 63.
    L. D. Libersky, A. G. Petschek, T. C. Carney, J. R. Hipp, and F. A. Allahdadi, J. Comput. Phys. 109, 67 (1993).ADSCrossRefGoogle Scholar
  64. 64.
    X. Y. Hu, and N. A. Adams, J. Comput. Phys. 227, 264 (2007).ADSCrossRefGoogle Scholar
  65. 65.
    A. Colagrossi, and M. Landrini, J. Comput. Phys. 191, 448 (2003).ADSCrossRefGoogle Scholar
  66. 66.
    R. A. Dalrymple, and B. D. Rogers, Coast. Eng. 53, 141 (2006).CrossRefGoogle Scholar
  67. 67.
    S. Shao, and E. Y. M. Lo, Adv. Water Res. 26, 787 (2003).CrossRefGoogle Scholar
  68. 68.
    Z. L. Zhang, D. L. Feng, T. Ma, and M. B. Liu, Eng. Anal. Bound. Elem. 98, 110 (2019).MathSciNetCrossRefGoogle Scholar
  69. 69.
    A. Zhang, P. Sun, and F. Ming, Comput. Methods Appl. Mech. Eng. 294, 189 (2015).ADSCrossRefGoogle Scholar
  70. 70.
    J. K. Chen, and J. E. Beraun, Comput. Methods Appl. Mech. Eng. 190, 225 (2000).ADSCrossRefGoogle Scholar
  71. 71.
    M. B. Liu, and G. R. Liu, Appl. Numer. Math. 56, 19 (2006).MathSciNetCrossRefGoogle Scholar
  72. 72.
    M. B. Liu, W. P. Xie, and G. R. Liu, Appl. Math. Model. 29, 1252 (2005).CrossRefGoogle Scholar
  73. 73.
    R. C. Batra, and G. M. Zhang, J. Comput. Phys. 201, 172 (2004).ADSCrossRefGoogle Scholar
  74. 74.
    G. M. Zhang, and R. C. Batra, Comput. Mech. 34, 137 (2004).Google Scholar
  75. 75.
    J. Fang, R. G. Owens, L. Tacher, and A. Parriaux, J. Non-Newton. Fluid Mech. 139, 68 (2006).CrossRefGoogle Scholar
  76. 76.
    J. Fang, and A. Parriaux, J. Comput. Phys. 227, 8894 (2008).ADSMathSciNetCrossRefGoogle Scholar
  77. 77.
    D. Asprone, F. Auricchio, and A. Reali, Int. J. Numer. Meth. Fluids 65, 1376 (2011).CrossRefGoogle Scholar
  78. 78.
    D. Asprone, F. Auricchio, A. Montanino, and A. Reali, Int. J. Numer. Meth. Eng. 99, 1 (2014).CrossRefGoogle Scholar
  79. 79.
    Z. L. Zhang, and M. B. Liu, Appl. Math. Model. 60, 606 (2018).MathSciNetCrossRefGoogle Scholar
  80. 80.
    Z. L. Zhang, K. Walayat, J. Z. Chang, and M. B. Liu, Int. J. Numer. Meth. Eng. 116, 530 (2018).CrossRefGoogle Scholar
  81. 81.
    C. Huang, J. M. Lei, M. B. Liu, and X. Y. Peng, Int. J. Numer. Meth. Fluids 78, 691 (2015).CrossRefGoogle Scholar
  82. 82.
    C. Huang, J. M. Lei, M. B. Liu, and X. Y. Peng, Int. J. Numer. Meth. Fluids 81, 377 (2016).CrossRefGoogle Scholar
  83. 83.
    J. Ren, T. Jiang, W. Lu, and G. Li, Comput. Phys. Commun. 205, 87 (2016).ADSMathSciNetCrossRefGoogle Scholar
  84. 84.
    G. Oger, D. Le Touzé, D. Guibert, M. de Leffe, J. Biddiscombe, J. Soumagne, and J. G. Piccinali, Comput. Phys. Commun. 200, 1 (2016).ADSMathSciNetCrossRefGoogle Scholar
  85. 85.
    A. Ferrari, M. Dumbser, E. F. Toro, and A. Armanini, Comput. Fluids 38, 1203 (2009).MathSciNetCrossRefGoogle Scholar
  86. 86.
    A. Zhang, X. Cao, F. Ming, and Z. F. Zhang, Appl. Ocean Res. 42, 24 (2013).CrossRefGoogle Scholar
  87. 87.
    H. Wen, B. Ren, P. Dong, and Y. Wang, Appl. Ocean Res. 59, 366 (2016).CrossRefGoogle Scholar
  88. 88.
    J. L. Cercos-Pita, Comput. Phys. Commun. 192, 295 (2015).ADSMathSciNetCrossRefGoogle Scholar
  89. 89.
    Q. Xiong, B. Li, and J. Xu, Comput. Phys. Commun. 184, 1701 (2013).ADSCrossRefGoogle Scholar
  90. 90.
    D. Winkler, M. Meister, M. Rezavand, and W. Rauch, Comput. Phys. Commun. 213, 165 (2017).ADSCrossRefGoogle Scholar
  91. 91.
    S. M. Longshaw, and B. D. Rogers, Adv. Eng. Softw. 83, 31 (2015).CrossRefGoogle Scholar
  92. 92.
    S. Børve, M. Omang, and J. Trulsen, J. Comput. Phys. 208, 345 (2005).ADSMathSciNetCrossRefGoogle Scholar
  93. 93.
    G. Oger, M. Doring, B. Alessandrini, and P. Ferrant, J. Comput. Phys. 213, 803 (2006).ADSMathSciNetCrossRefGoogle Scholar
  94. 94.
    R. Vacondio, B. D. Rogers, P. K. Stansby, and P. Mignosa, Adv. Water Res. 58, 10 (2013).CrossRefGoogle Scholar
  95. 95.
    R. Vacondio, B. D. Rogers, P. K. Stansby, P. Mignosa, and J. Feldman, Comput. Methods Appl. Mech. Eng. 256, 132 (2013).ADSCrossRefGoogle Scholar
  96. 96.
    R. Vacondio, B. D. Rogers, and P. K. Stansby, Int. J. Numer. Meth. Fluids 69, 1377 (2012).CrossRefGoogle Scholar
  97. 97.
    D. A. Barcarolo, D. Le Touzé, G. Oger, and F. de Vuyst, J. Comput. Phys. 273, 640 (2014).ADSCrossRefGoogle Scholar
  98. 98.
    P. N. Sun, A. Colagrossi, S. Marrone, and A. M. Zhang, Comput. Methods Appl. Mech. Eng. 315, 25 (2017).ADSCrossRefGoogle Scholar
  99. 99.
    L. Chiron, G. Oger, M. de Leffe, and D. Le Touzé, J. Comput. Phys. 354, 552 (2018).ADSMathSciNetCrossRefGoogle Scholar
  100. 100.
    J. Feldman, and J. Bonet, Int. J. Numer. Meth. Eng. 72, 295 (2007).CrossRefGoogle Scholar
  101. 101.
    Y. R. López, D. Roose, and C. Recarey Morfa, Comput. Mech. 51, 731 (2013).MathSciNetCrossRefGoogle Scholar
  102. 102.
    S. Koshizuka, A. Nobe, and Y. Oka, Int. J. Numer. Meth. Fluids 26, 751 (1998).CrossRefGoogle Scholar
  103. 103.
    E. S. Lee, C. Moulinec, R. Xu, D. Violeau, D. Laurence, and P. Stansby, J. Comput. Phys. 227, 8417 (2008).ADSMathSciNetCrossRefGoogle Scholar
  104. 104.
    A. Khayyer, H. Gotoh, and S. D. Shao, Coast. Eng. 55, 236 (2008).CrossRefGoogle Scholar
  105. 105.
    H. Gotoh, A. Khayyer, H. Ikari, T. Arikawa, and K. Shimosako, Appl. Ocean Res. 46, 104 (2008).CrossRefGoogle Scholar
  106. 106.
    A. Skillen, S. Lind, P. K. Stansby, and B. D. Rogers, Comput. Methods Appl. Mech. Eng. 265, 163 (2013).ADSCrossRefGoogle Scholar
  107. 107.
    M. Antuono, A. Colagrossi, S. Marrone, and D. Molteni, Comput. Phys. Commun. 181, 532 (2010).ADSCrossRefGoogle Scholar
  108. 108.
    M. Antuono, A. Colagrossi, and S. Marrone, Comput. Phys. Commun. 183, 2570 (2012).ADSMathSciNetCrossRefGoogle Scholar
  109. 109.
    J. P. Vila, Math. Model. Methods Appl. Sci. 9, 161 (1999).CrossRefGoogle Scholar
  110. 110.
    S. I. Inutsuka, J. Comput. Phys. 179, 238 (2002).ADSCrossRefGoogle Scholar
  111. 111.
    J. J. Monaghan, J. Comput. Phys. 136, 298 (1997).ADSMathSciNetCrossRefGoogle Scholar
  112. 112.
    P. Omidvar, P. K. Stansby, and B. D. Rogers, Int. J. Numer. Meth. Fluids 72, 427 (2013).CrossRefGoogle Scholar
  113. 113.
    P. K. Koukouvinis, J. S. Anagnostopoulos, and D. E. Papantonis, Int. J. Numer. Meth. Fluids 71, 1152 (2013).CrossRefGoogle Scholar
  114. 114.
    L. Han, and X. Hu, J. Hydrodyn. 30, 62 (2018).ADSCrossRefGoogle Scholar
  115. 115.
    A. Rafiee, and K. P. Thiagarajan, Comput. Methods Appl. Mech. Eng. 198, 2785 (2009).ADSCrossRefGoogle Scholar
  116. 116.
    M. Liu, J. Shao, and H. Li, J. Hydrodyn. 25, 673 (2013).ADSCrossRefGoogle Scholar
  117. 117.
    F. R. Ming, A. M. Zhang, and X. Y. Cao, Acta Mech. Sin. 29, 241 (2013).ADSMathSciNetCrossRefGoogle Scholar
  118. 118.
    F. R. Ming, A. M. Zhang, and S. P. Wang, Int. J. Appl. Mech. 07, 1550032 (2015).CrossRefGoogle Scholar
  119. 119.
    V. Mehra, and S. Chaturvedi, J. Comput. Phys. 212, 318 (2006).ADSCrossRefGoogle Scholar
  120. 120.
    A. M. Zhang, W. S. Yang, and X. L. Yao, Appl. Ocean Res. 34, 10 (2012).ADSCrossRefGoogle Scholar
  121. 121.
    M. B. Liu, Z. L. Zhang, and D. L. Feng, Comput. Mech. 60, 513 (2017).MathSciNetCrossRefGoogle Scholar
  122. 122.
    P. W. Randles, and L. D. Libersky, Comput. Methods Appl. Mech. Eng. 139, 375 (1996).ADSCrossRefGoogle Scholar
  123. 123.
    M. B. Liu, G. R. Liu, Z. Zong, and K. Y. Lam, Comput. Fluids 32, 305 (2003).CrossRefGoogle Scholar
  124. 124.
    D. L. Feng, M. B. Liu, H. Q. Li, and G. R. Liu, Comput. Fluids 86, 77 (2013).CrossRefGoogle Scholar
  125. 125.
    M. B. Liu, G. R. Liu, K. Y. Lam, and Z. Zong, Shock Waves 12, 509 (2003).ADSCrossRefGoogle Scholar
  126. 126.
    M. B. Liu, G. R. Liu, and K. Y. Lam, Shock Waves 15, 21 (2006).ADSCrossRefGoogle Scholar
  127. 127.
    Z. L. Zhang, and M. B. Liu, Eng. Anal. Bound. Elem. 83, 141 (2017).MathSciNetCrossRefGoogle Scholar
  128. 128.
    Z. L. Zhang, D. L. Feng, and M. B. Liu, J. Manuf. Proc. 35, 169 (2018).CrossRefGoogle Scholar
  129. 129.
    Z. L. Zhang, T. Ma, M. B. Liu, and D. Feng, Int. J. Comput. Methods 16, 1846001 (2019).MathSciNetCrossRefGoogle Scholar
  130. 130.
    A. Zhang, W. S. Yang, C. Huang, and F. Ming, Comput. Fluids 71, 169 (2013).MathSciNetCrossRefGoogle Scholar
  131. 131.
    F. R. Ming, A. M. Zhang, Y. Z. Xue, and S. P. Wang, Ocean Eng. 117, 359 (2016).CrossRefGoogle Scholar
  132. 132.
    P. Wang, A. M. Zhang, F. Ming, P. Sun, and H. Cheng, J. Fluid Mech. 860, 81 (2019).ADSMathSciNetCrossRefGoogle Scholar
  133. 133.
    S. Marrone, A. Di Mascio, and D. Le Touzé, J. Comput. Phys. 310, 161 (2016).ADSMathSciNetCrossRefGoogle Scholar
  134. 134.
    L. Chiron, S. Marrone, A. Di Mascio, and D. Le Touzé, J. Comput. Phys. 364, 111 (2018).ADSMathSciNetCrossRefGoogle Scholar
  135. 135.
    D. Hu, T. Long, Y. Xiao, X. Han, and Y. Gu, Comput. Methods Appl. Mech. Eng. 276, 266 (2014).ADSCrossRefGoogle Scholar
  136. 136.
    T. Long, D. Hu, D. Wan, C. Zhuang, and G. Yang, J. Comput. Phys. 350, 166 (2017).ADSMathSciNetCrossRefGoogle Scholar
  137. 137.
    Z. Li, J. Leduc, J. Nunez-Ramirez, A. Combescure, and J. C. Marongiu, Comput. Mech. 55, 697 (2015).MathSciNetCrossRefGoogle Scholar
  138. 138.
    Q. Yang, V. Jones, and L. McCue, Ocean Eng. 55, 136 (2012).CrossRefGoogle Scholar
  139. 139.
    K. Wu, D. Yang, and N. Wright, Comput. Struct. 177, 141 (2016).CrossRefGoogle Scholar
  140. 140.
    L. C. Qiu, Ind. Eng. Chem. Res. 52, 11313 (2013).CrossRefGoogle Scholar
  141. 141.
    Y. Tang, Q. Jiang, and C. Zhou, Appl. Math. Model. 62, 436 (2018).MathSciNetCrossRefGoogle Scholar
  142. 142.
    X. Yang, and M. Liu, Commun. Comput. Phys. 22, 1015 (2017).MathSciNetCrossRefGoogle Scholar
  143. 143.
    X. Yang, M. Liu, and S. Peng, Phys. Rev. E 90, 063011 (2014).ADSCrossRefGoogle Scholar
  144. 144.
    X. Yang, M. Liu, S. Peng, and C. Huang, Coast. Eng. 108, 56 (2016).CrossRefGoogle Scholar
  145. 145.
    J. J. Monaghan, and J. C. Lattanzio, Astron. Astrophys. 149, 135 (1985).ADSGoogle Scholar
  146. 146.
    A. Colagrossi, M. Antuono, and D. Le Touzé, Phys. Rev. E 79, 056701 (2009).ADSCrossRefGoogle Scholar
  147. 147.
    Z. L. Zhang, T. Ma, D. L. Feng, and M. B. Liu, Int. J. Comput. Methods 15, 1844004 (2018).CrossRefGoogle Scholar
  148. 148.
    J. D. Anderson, Computational Fluid Dynamics: The Basics With Applications (McGraw Hill, New York, 2002).Google Scholar
  149. 149.
    H. U. Mair, Shock Vib. 6, 81 (1999).CrossRefGoogle Scholar
  150. 150.
    R. Car, and M. Parrinello, Phys. Rev. Lett. 55, 2471 (1985).ADSCrossRefGoogle Scholar
  151. 151.
    H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. DiNola, and J. R. Haak, J. Chem. Phys. 81, 3684 (1984).ADSCrossRefGoogle Scholar
  152. 152.
    S. Yamamoto, Y. Maruyama, and S. Hyodo, J. Chem. Phys. 116, 5842 (2002).ADSCrossRefGoogle Scholar
  153. 153.
    R. D. Groot, and P. B. Warren, J. Chem. Phys. 107, 4423 (1997).ADSCrossRefGoogle Scholar
  154. 154.
    M. S. Shadloo, A. Zainali, M. Yildiz, and A. Suleman, Int. J. Numer. Meth. Eng. 89, 939 (2012).CrossRefGoogle Scholar
  155. 155.
    D. H. Zhang, Y. X. Shi, C. Huang, Y. L. Si, and W. Li, J. Mar. Sci. Technol. 24, 73 (2019).CrossRefGoogle Scholar
  156. 156.
    P. N. Sun, A. Colagrossi, S. Marrone, M. Antuono, and A. M. Zhang, Comput. Phys. Commun. 224, 63 (2018).ADSMathSciNetCrossRefGoogle Scholar
  157. 157.
    F. Macia, M. Antuono, L. M. Gonzalez, and A. Colagrossi, Prog. Theor. Phys. 125, 1091 (2011).ADSCrossRefGoogle Scholar
  158. 158.
    S. Adami, X. Y. Hu, and N. A. Adams, J. Comput. Phys. 231, 7057 (2012).ADSMathSciNetCrossRefGoogle Scholar
  159. 159.
    J. J. Monaghan, and J. B. Kajtar, Comput. Phys. Commun. 180, 1811 (2009).ADSCrossRefGoogle Scholar
  160. 160.
    B. D. Rogers, and R. A. Dalrymple, SPH Modeling of Tsunami Waves (World scientific, Singapore, 2008).CrossRefGoogle Scholar
  161. 161.
    S. Kulasegaram, J. Bonet, R. W. Lewis, and M. Profit, Comput. Mech. 33, 316 (2004).CrossRefGoogle Scholar
  162. 162.
    M. Ferrand, D. R. Laurence, B. D. Rogers, D. Violeau, and C. Kassiotis, Int. J. Numer. Meth. Fluids 71, 446 (2013).CrossRefGoogle Scholar
  163. 163.
    A. Amicarelli, G. Agate, and R. Guandalini, Int. J. Numer. Meth. Eng. 95, 419 (2013).CrossRefGoogle Scholar
  164. 164.
    A. Leroy, D. Violeau, M. Ferrand, and C. Kassiotis, J. Comput. Phys. 261, 106 (2014).ADSMathSciNetCrossRefGoogle Scholar
  165. 165.
    Z. Chen, Z. Zong, M. B. Liu, L. Zou, H. T. Li, and C. Shu, J. Comput. Phys. 283, 169 (2015).ADSMathSciNetCrossRefGoogle Scholar
  166. 166.
    S. Adami, X. Y. Hu, and N. A. Adams, J. Comput. Phys. 229, 5011 (2010).ADSCrossRefGoogle Scholar
  167. 167.
    N. Grenier, M. Antuono, A. Colagrossi, D. Le Touzé, and B. Alessandrini, J. Comput. Phys. 228, 8380 (2009).ADSMathSciNetCrossRefGoogle Scholar
  168. 168.
    T. Belytschko, Y. Krongauz, J. Dolbow, and C. Gerlach, Int. J. Numer. Meth. Eng. 43, 785 (2015).CrossRefGoogle Scholar
  169. 169.
    M. B. Liu, J. R. Shao, and J. Z. Chang, Sci. China Technol. Sci. 55, 244 (2012).CrossRefGoogle Scholar
  170. 170.
    Z. Li, J. Leduc, A. Combescure, and F. Leboeuf, Comput. Fluids 103, 6 (2014).MathSciNetCrossRefGoogle Scholar
  171. 171.
    G. Fourey, G. Oger, D. Touzé, and B. Alessandrini, in IOP Conference Series: Materials Science and Engineering 10 (IOP Publishing, Bristol, 2010), p. 012041.Google Scholar
  172. 172.
    P. H. L. Groenenboom, and B. K. Cartwright, J. Hydraul. Res. 48, 61 (2010).CrossRefGoogle Scholar
  173. 173.
    T. Belytschko, W. K. Liu, and B. Moran, Nonlinear Finite Elements for Continua and Structures (John Wiley & Sons Inc., Hoboken, 2014).zbMATHGoogle Scholar
  174. 174.
    S. W. Attaway, M. W. Heinstein, and J. W. Swegle, Nucl. Eng. Des. 150, 199 (1994).CrossRefGoogle Scholar
  175. 175.
    Z. Zhang, H. Qiang, and W. Gao, Eng. Struct. 33, 255 (2011).CrossRefGoogle Scholar
  176. 176.
    T. De Vuyst, R. Vignjevic, and J. C. Campbell, Int. J. Impact Eng. 31, 1054 (2005).CrossRefGoogle Scholar
  177. 177.
    E. A. Fadlun, R. Verzicco, P. Orlandi, and J. Mohd-Yusof, J. Comput. Phys. 161, 35 (2000).ADSMathSciNetCrossRefGoogle Scholar
  178. 178.
    R. Mittal, and G. Iaccarino, Annu. Rev. Fluid Mech. 37, 239 (2005).ADSCrossRefGoogle Scholar
  179. 179.
    M. Neuhauser, and J.-C. Marongiu, in Proceedings of 9th SPHERIC International Workshop (SPH European Research Interest Community, Paris, 2014).Google Scholar
  180. 180.
    E. Napoli, M. De Marchis, C. Gianguzzi, B. Milici, and A. Monteleone, Comput. Methods Appl. Mech. Eng. 310, 674 (2016).ADSCrossRefGoogle Scholar
  181. 181.
    F. Chen, H. Qiang, and W. Gao, Comput. Chem. Eng. 77, 135 (2015).CrossRefGoogle Scholar
  182. 182.
    F. Chen, H. Qiang, H. Zhang, and W. Gao, Int. J. Numer. Meth. Eng. 109, 73 (2017).CrossRefGoogle Scholar
  183. 183.
    D. Zhou, and R. H. Wagoner, J. Mater. Proc. Tech. 50, 1 (1995).CrossRefGoogle Scholar
  184. 184.
    K.-I. Tsubota, S. Wada, and T. Yamaguchi, J. Mater. Proc. Technol. 1, 159 (2006).Google Scholar
  185. 185.
    S. M. Hosseini, and J. J. Feng, Chem. Eng. Sci. 64, 4488 (2009).CrossRefGoogle Scholar
  186. 186.
    P. W. Cleary, Miner. Eng. 73, 85 (2015).CrossRefGoogle Scholar
  187. 187.
    B. Ren, Z. Jin, R. Gao, Y. Wang, and Z. Xu, J. Waterw. Port Coast. Ocean Eng. 140, 04014022 (2014).CrossRefGoogle Scholar
  188. 188.
    M. Robinson, M. Ramaioli, and S. Luding, Int. J. Multiphase Flow 59, 121 (2014).CrossRefGoogle Scholar
  189. 189.
    A. M. Zhang, F. R. Ming, and S. P. Wang, Appl. Ocean Res. 43, 223 (2013).CrossRefGoogle Scholar
  190. 190.
    K. Gong, S. Shao, H. Liu, B. Wang, and S. K. Tan, J. Fluids Struct. 65, 155 (2016).ADSCrossRefGoogle Scholar
  191. 191.
    X. Liu, H. Xu, S. Shao, and P. Lin, Comput. Fluids 71, 113 (2013).MathSciNetCrossRefGoogle Scholar
  192. 192.
    L. Wang, F. Xu, Y. Yang, and J. Wang, Eng. Anal. Bound. Elem. 100, 140 (2019).MathSciNetCrossRefGoogle Scholar
  193. 193.
    T. Ye, D. Pan, C. Huang, M. Liu, Phys. Fluids 31 (2019).Google Scholar
  194. 194.
    J. Shao, S. Li, Z. Li, and M. Liu, Eng. Comput. 32, 1172 (2015).CrossRefGoogle Scholar
  195. 195.
    H. Akyildız, and U. N. Erdem, Ocean Eng. 33, 2135 (2006).CrossRefGoogle Scholar
  196. 196.
    O. M. Faltinsen, O. F. Rognebakke, I. A. Lukovsky, and A. N. Timokha, J. Fluid Mech. 407, 201 (2000).ADSMathSciNetCrossRefGoogle Scholar
  197. 197.
    M. Greenhow, and S. Moyo, Philos. Trans. R. Soc. London. Ser. A-Math. Phys. Eng. Sci. 355, 551 (1997).ADSCrossRefGoogle Scholar
  198. 198.
    P. Lin, Comput. Fluids 36, 549 (2007).CrossRefGoogle Scholar
  199. 199.
    P. A. Tyvand, and T. Miloh, J. Fluid Mech. 286, 67 (1995).ADSMathSciNetCrossRefGoogle Scholar
  200. 200.
    G. Oger, L. Brosset, P. M. Guilcher, E. Jacquin, J. B. Deuff, and D. L. Touzé, Int. J. Offshore Polar Eng. 20, 181 (2010).Google Scholar
  201. 201.
    C. Antoci, M. Gallati, and S. Sibilla, Comput. Struct. 85, 879 (2007).CrossRefGoogle Scholar
  202. 202.
    S. C. Hwang, A. Khayyer, H. Gotoh, and J. C. Park, J. Fluids Struct. 50, 497 (2014).ADSCrossRefGoogle Scholar
  203. 203.
    A. Khayyer, H. Gotoh, H. Falahaty, and Y. Shimizu, Comput. Phys. Commun. 232, 139 (2018).ADSMathSciNetCrossRefGoogle Scholar
  204. 204.
    Y. M. Scolan, J. Sound Vib. 277, 163 (2004).ADSCrossRefGoogle Scholar
  205. 205.
    J. C. Liao, D. N. Beal, G. V. Lauder, and M. S. Triantafyllou, Science 302, 1566 (2003).ADSCrossRefGoogle Scholar
  206. 206.
    T. Y. Wu, Annu. Rev. Fluid Mech. 43, 25 (2011).ADSCrossRefGoogle Scholar
  207. 207.
    S. Vogel, J. Exp. Bot. 40, 941 (1989).CrossRefGoogle Scholar
  208. 208.
    F. Gosselin, E. de Langre, and B. A. Machado-Almeida, J. Fluid Mech. 650, 319 (2010).ADSCrossRefGoogle Scholar
  209. 209.
    S. Alben, M. Shelley, and J. Zhang, Nature 420, 479 (2002).ADSCrossRefGoogle Scholar
  210. 210.
    S. Alben, M. Shelley, and J. Zhang, Phys. Fluids 16, 1694 (2004).ADSCrossRefGoogle Scholar
  211. 211.
    W. Hu, Q. Tian, and H. Hu, Nonlin. Dyn. 75, 653 (2014).CrossRefGoogle Scholar
  212. 212.
    W. Hu, Q. Tian, and H. Y. Hu, Sci. China-Phys. Mech. Astron. 61, 044711 (2018).ADSCrossRefGoogle Scholar
  213. 213.
    L. A. Miller, A. Santhanakrishnan, S. Jones, C. Hamlet, K. Mertens, and L. Zhu, J. Exp. Biol. 215, 2716 (2012).CrossRefGoogle Scholar
  214. 214.
    L. Zhu, J. Fluid Mech. 587, 217 (2007).ADSMathSciNetCrossRefGoogle Scholar
  215. 215.
    R. Y. Yakoub, and A. A. Shabana, J. Mech. Des. 123, 614 (2001).CrossRefGoogle Scholar
  216. 216.
    R. Glowinski, T. W. Pan, T. I. Hesla, and D. D. Joseph, Int. J. Multiphase Flow 25, 755 (1999).MathSciNetCrossRefGoogle Scholar
  217. 217.
    B. K. Mishra, and R. K. Rajamani, Appl. Math. Model. 16, 598 (1992).CrossRefGoogle Scholar
  218. 218.
    S. B. Pillapakkam, and P. Singh, J. Comput. Phys. 174, 552 (2001).ADSCrossRefGoogle Scholar
  219. 219.
    G. J. Wagner, S. Ghosal, and W. K. Liu, Int. J. Numer. Meth. Engng. 56, 1261 (2003).CrossRefGoogle Scholar
  220. 220.
    N. Tofighi, M. Ozbulut, A. Rahmat, J. J. Feng, and M. Yildiz, J. Comput. Phys. 297, 207 (2015).ADSMathSciNetCrossRefGoogle Scholar
  221. 221.
    M. R. Hashemi, R. Fatehi, and M. T. Manzari, Int. J. Non-Lin. Mech. 47, 626 (2012).CrossRefGoogle Scholar
  222. 222.
    X. Bian, and M. Ellero, Comput. Phys. Commun. 185, 53 (2014).ADSMathSciNetCrossRefGoogle Scholar
  223. 223.
    S. Turek, D. Wan, and L. S. Rivkind, Lect. Notes Comput. Sci. Eng. 35, 37 (2003).CrossRefGoogle Scholar
  224. 224.
    R. Glowinski, T. W. Pan, T. I. Hesla, D. D. Joseph, and J. Périaux, J. Comput. Phys. 169, 363 (2001).ADSMathSciNetCrossRefGoogle Scholar
  225. 225.
    G. He, G. Jin, and Y. Yang, Annu. Rev. Fluid Mech. 49, 51 (2017).ADSCrossRefGoogle Scholar
  226. 226.
    Z. L. Zhang, K. Walayat, C. Huang, J. Z. Chang, and M. B. Liu, Int. J. Heat Mass Transfer 128, 1245 (2019).CrossRefGoogle Scholar
  227. 227.
    J. W. Swegle, and S. W. Attaway, Comput. Mech. 17, 151 (1995).CrossRefGoogle Scholar
  228. 228.
    Y. Wang, H. G. Beom, M. Sun, and S. Lin, Int. J. Impact Eng. 38, 51 (2011).CrossRefGoogle Scholar
  229. 229.
    S. A. A. A. Mousavi, and S. T. S. Al-Hassani, Mater. Des. 29, 1 (2008).CrossRefGoogle Scholar
  230. 230.
    S. R. Reid, Int. J. Mech. Sci. 16, 399 (1974).CrossRefGoogle Scholar
  231. 231.
    G. R. Cowan, O. R. Bergmann, and A. H. Holtzman, Metall. Mater. Trans. B 2, 3145 (1971).ADSCrossRefGoogle Scholar
  232. 232.
    M. Katayama, A. Takeba, S. Toda, and S. Kibe, Int. J. Impact Eng. 23, 443 (1999).CrossRefGoogle Scholar
  233. 233.
    M. N. Raftenberg, in Twelfth Army Symposium on Solid Mechanics Proceedings, Watertown, USA November 4–7, 1991, edited by S. C. Chou (1992).Google Scholar
  234. 234.
    J. J. Monaghan, J. Comput. Phys. 159, 290 (2000).ADSCrossRefGoogle Scholar
  235. 235.
    N. Tsuruta, A. Khayyer, and H. Gotoh, Comput. Fluids 82, 158 (2013).MathSciNetCrossRefGoogle Scholar
  236. 236.
    R. Xu, P. Stansby, and D. Laurence, J. Comput. Phys. 228, 6703 (2009).ADSMathSciNetCrossRefGoogle Scholar
  237. 237.
    S. J. Lind, R. Xu, P. K. Stansby, and B. D. Rogers, J. Comput. Phys. 231, 1499 (2012).ADSMathSciNetCrossRefGoogle Scholar
  238. 238.
    P. Omidvar, P. K. Stansby, and B. D. Rogers, Wave Body Interaction in 2D Using Smoothed Particle Hydrodynamics (SPH) With Variable Particle Mass (John Wiley & Sons, Hoboken, 2012).zbMATHCrossRefGoogle Scholar
  239. 239.
    S. Kitsionas, and A. P. Whitworth, Mon. Not. R. Astron. Soc. 330, 129 (2002).ADSCrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.BIC-ESAT, College of EngineeringPeking UniversityBeijingChina
  2. 2.State Key Laboratory for Turbulence and Complex SystemsPeking UniversityBeijingChina
  3. 3.Institute of Ocean ResearchPeking UniversityBeijingChina

Personalised recommendations