Advertisement

Lower bound of local quantum uncertainty for high-dimensional bipartite quantum systems

  • ShuHao Wang
  • Hui LiEmail author
  • Xian Lu
  • Bin Chen
Article

Abstract

Quantum correlations are of fundamental importance in quantum phenomena and studies related to quantum information processing. The measurement of quantum correlations is a central challenge. A recently proposed measure of quantum correlations, local quantum uncertainty (LQU), satisfies all the physical requirements as a measure of quantum correlations. This study derives a closed-form lower bound of the LQU for arbitrary-dimensional bipartite quantum states using operator relaxation. We also compared the lower bound with the optimized LQU for several typical sets of quantum states. The results show that the lower bound is near to the optimized LQU for three-dimensional bipartite quantum systems.

En

quantum correlations local quantum uncertainty bipartite quantum systems 

References

  1. 1.
    A. Einstein, B. Podolsky, and N. Rosen, Phys. Rev. 47, 777 (1935).ADSGoogle Scholar
  2. 2.
    E. Schrödinger, Naturwissenschaften 23, 807 (1935).ADSGoogle Scholar
  3. 3.
    R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, Rev. Mod. Phys. 81, 865 (2009).ADSGoogle Scholar
  4. 4.
    F. F. Du, and F. G. Deng, Sci. China-Phys. Mech. Astron. 58, 040303 (2015).Google Scholar
  5. 5.
    S. Y. Hou, H. Li, and G. L. Long, Sci. Bull. 62, 863 (2017).Google Scholar
  6. 6.
    S. J. Wei, T. Xin, and G. L. Long, Sci. China-Phys. Mech. Astron. 61, 070311 (2018), arXiv: 1706.08080.ADSGoogle Scholar
  7. 7.
    Y. B. Sheng, and L. Zhou, Phys. Rev. A 98, 052343 (2018).ADSGoogle Scholar
  8. 8.
    P. H. Niu, Z. R. Zhou, Z. S. Lin, Y. B. Sheng, L. G. Yin, and G. L. Long, Sci. Bull. 63, 1345 (2018).Google Scholar
  9. 9.
    S. S. Chen, L. Zhou, W. Zhong, and Y. B. Sheng, Sci. China-Phys. Mech. Astron. 61, 090312 (2018).Google Scholar
  10. 10.
    F. G. Deng, G. L. Long, and X. S. Liu, Phys. Rev. A 68, 042317 (2003).ADSGoogle Scholar
  11. 11.
    A. K. Ekert, Phys. Rev. Lett. 67, 661 (1991).ADSMathSciNetGoogle Scholar
  12. 12.
    F. Z. Wu, G. J. Yang, H. B. Wang, J. Xiong, F. Alzahrani, A. Hobiny, and F. G. Deng, Sci. China-Phys. Mech. Astron. 60, 120313 (2017).ADSGoogle Scholar
  13. 13.
    W. Zhang, D. S. Ding, Y. B. Sheng, L. Zhou, B. S. Shi, and G. C. Guo, Phys. Rev. Lett. 118, 220501 (2017), arXiv: 1609.09184.ADSGoogle Scholar
  14. 14.
    Y. B. Sheng, and L. Zhou, Sci. Bull. 62, 1025 (2017).Google Scholar
  15. 15.
    G. L. Long, and X. S. Liu, Phys. Rev. A 65, 032302 (2002).ADSGoogle Scholar
  16. 16.
    Z. H. Ma, Z. H. Chen, and S. M. Fei, Sci. China-Phys. Mech. Astron. 60, 010321 (2017), arXiv: 1701.02226.ADSGoogle Scholar
  17. 17.
    K. Zhang, J. Ma, X. Zhang, J. Thompson, V. Vedral, K. Kim, and M. Gu, Sci. Bull. 63, 765 (2018).Google Scholar
  18. 18.
    J. Mlynek, Quantum Eng. 1, e5 (2019).Google Scholar
  19. 19.
    H. Ollivier, and W. H. Zurek, Phys. Rev. Lett. 88, 017901 (2001).ADSGoogle Scholar
  20. 20.
    E. Knill, and R. Laflamme, Phys. Rev. Lett. 81, 5672 (1998).ADSGoogle Scholar
  21. 21.
    L. Henderson, and V. Vedral, J. Phys. A: Math. Gen. 34, 6899 (2001).ADSGoogle Scholar
  22. 22.
    K. Modi, A. Brodutch, H. Cable, T. Paterek, and V. Vedral, Rev. Mod. Phys. 84, 1655 (2012), arXiv: 1112.6238.ADSGoogle Scholar
  23. 23.
    M. Zwolak, and W. H. Zurek, Sci. Rep. 3, 1729 (2013), arXiv:1303.4659.ADSGoogle Scholar
  24. 24.
    B. Dakić, V. Vedral, and Č. Brukner, Phys. Rev. Lett. 105, 190502 (2010), arXiv: 1004.0190.ADSGoogle Scholar
  25. 25.
    B. Bellomo, R. Lo Franco, and G. Compagno, Phys. Rev. A 86, 012312 (2012), arXiv: 1104.4043.ADSGoogle Scholar
  26. 26.
    A. K. Rajagopal, and R. W. Rendell, Phys. Rev. A 66, 022104 (2002).ADSMathSciNetGoogle Scholar
  27. 27.
    S. Luo, Phys. Rev. A 77, 022301 (2008).ADSGoogle Scholar
  28. 28.
    Q. Chen, C. Zhang, S. Yu, X. X. Yi, and C. H. Oh, Phys. Rev. A 84, 042313 (2011), arXiv: 1102.0181.ADSGoogle Scholar
  29. 29.
    D. Girolami, and G. Adesso, Phys. Rev. A 83, 052108 (2011), arXiv: 1103.3189.ADSGoogle Scholar
  30. 30.
    Y. Huang, New J. Phys. 16, 033027 (2014), arXiv: 1305.5941.ADSMathSciNetGoogle Scholar
  31. 31.
    S. Luo, and S. Fu, Phys. Rev. A 82, 034302 (2010).ADSMathSciNetGoogle Scholar
  32. 32.
    A. S. M. Hassan, B. Lari, and P. S. Joag, Phys. Rev. A 85, 024302 (2012), arXiv: 1010.1920.ADSGoogle Scholar
  33. 33.
    D. Girolami, T. Tufarelli, and G. Adesso, Phys. Rev. Lett. 110, 240402 (2013), arXiv: 1212.2214.ADSGoogle Scholar
  34. 34.
    E. P. Wigner, and M. M. Yanase, Proc. Natl. Acad. Sci. USA 49, 910 (1963).ADSGoogle Scholar
  35. 35.
    G. Karpat, B. Çakmak, and F. F. Fanchini, Phys. Rev. B 90, 104431 (2014), arXiv: 1404.6427.ADSGoogle Scholar
  36. 36.
    T. M. Carrijo, A. T. Avelar, and L. C. Céleri, J. Phys. B-At. Mol. Opt. Phys. 48, 125501 (2015), arXiv: 1501.05004.ADSGoogle Scholar
  37. 37.
    I. B. Coulamy, J. H. Warnes, M. S. Sarandy, and A. Saguia, Phys. Lett. A 380, 1724 (2016), arXiv: 1508.07382.ADSMathSciNetGoogle Scholar
  38. 38.
    W. W. Cheng, Z. Z. Du, L. Y. Gong, S. M. Zhao, and J. M. Liu, Europhys. Lett. 108, 46003 (2014).ADSGoogle Scholar
  39. 39.
    Z. He, C. Yao, Q. Wang, and J. Zou, Phys. Rev. A 90, 042101 (2014).ADSGoogle Scholar
  40. 40.
    B. Çakmak, G. Karpat, and F. Fanchini, Entropy 17, 790 (2015), arXiv: 1502.02306.ADSGoogle Scholar
  41. 41.
    J. L. Guo, J. L. Wei, W. Qin, and Q. X. Mu, Quantum Inf. Process. 14, 1429 (2015).ADSGoogle Scholar
  42. 42.
    J. S. Sales, W. B. Cardoso, A. T. Avelar, and N. G. de Almeida, Phys. A-Stat. Mech. Appl. 443, 399 (2016).Google Scholar
  43. 43.
    E. Faizi, and H. Eftekhari, arXiv: 1401.4572.Google Scholar
  44. 44.
    A. Sen, A. Bhar, and D. Sarkar, Quantum Inf. Process. 14, 269 (2015), arXiv: 1304.7019.ADSMathSciNetGoogle Scholar
  45. 45.
    A. Hurwitz, Nachr. Ges. Wiss. Gottinger Math. Phys. 1897, 71 (1897).Google Scholar
  46. 46.
    H. Li, Y. S. Li, S. H. Wang, and G. L. Long, Commun. Theor. Phys. 61, 273 (2014).ADSGoogle Scholar
  47. 47.
    S. Luo, Phys. Rev. Lett. 91, 180403 (2003).ADSGoogle Scholar
  48. 48.
    R. F. Werner, Phys. Rev. A 40, 4277 (1989).ADSGoogle Scholar
  49. 49.
    E. Chitambar, Phys. Rev. A 86, 032110 (2012), arXiv: 1110.3057.ADSGoogle Scholar
  50. 50.
    P. Horodecki, Phys. Lett. A 232, 333 (1997).ADSMathSciNetGoogle Scholar
  51. 51.
    D. Kaszlikowski, P. Gnaciński, M. Zukowski, W. Miklaszewski, and A. Zeilinger, Phys. Rev. Lett. 85, 4418 (2000).ADSGoogle Scholar
  52. 52.
    J. L. Chen, D. Kaszlikowski, L. C. Kwek, C. H. Oh, and M. Zukowski, Phys. Rev. A 64, 052109 (2001).ADSGoogle Scholar
  53. 53.
    D. Collins, N. Gisin, N. Linden, S. Massar, and S. Popescu, Phys. Rev. Lett. 88, 040404 (2002).ADSMathSciNetGoogle Scholar
  54. 54.
    J. L. Chen, and D. L. Deng, Phys. Rev. A 79, 012111 (2009), arXiv: 0809.1713.ADSGoogle Scholar
  55. 55.
    W. Son, J. Lee, and M. S. Kim, Phys. Rev. Lett. 96, 060406 (2006).ADSMathSciNetGoogle Scholar
  56. 56.
    Q. Y. He, P. D. Drummond, and M. D. Reid, Phys. Rev. A 83, 032120 (2011), arXiv: 1103.3324.ADSGoogle Scholar
  57. 57.
    J. Ahrens, E. Amselem, A. Cabello, and M. Bourennane, Sci. Rep. 3, 2170 (2013), arXiv: 1301.2887.ADSGoogle Scholar
  58. 58.
    H. Bechmann-Pasquinucci, and A. Peres, Phys. Rev. Lett. 85, 3313 (2000).ADSMathSciNetGoogle Scholar
  59. 59.
    M. Bourennane, A. Karlsson, and G. Björk, Phys. Rev. A 64, 012306 (2001).ADSGoogle Scholar
  60. 60.
    N. J. Cerf, M. Bourennane, A. Karlsson, and N. Gisin, Phys. Rev. Lett. 88, 127902 (2002).ADSGoogle Scholar
  61. 61.
    T. Durt, N. J. Cerf, N. Gisin, and M. Zukowski, Phys. Rev. A 67, 012311 (2003).ADSGoogle Scholar
  62. 62.
    F. Pan, G. Lu, and J. P. Draayer, Int. J. Mod. Phys. B 20, 1333 (2006).ADSGoogle Scholar
  63. 63.
    M. Fujiwara, M. Takeoka, J. Mizuno, and M. Sasaki, Phys. Rev. Lett. 90, 167906 (2003).ADSGoogle Scholar
  64. 64.
    L. R. Long, H. W. Li, P. Zhou, C. Fan, and C. L. Yin, Sci. China-Phys. Mech. Astron. 54, 484 (2011).ADSGoogle Scholar
  65. 65.
    T. C. Ralph, K. J. Resch, and A. Gilchrist, Phys. Rev. A 75, 022313 (2007), arXiv: 0806.0654.ADSGoogle Scholar
  66. 66.
    T. Yan, and F. L. Yan, Chin. Sci. Bull. 56, 24 (2011), arXiv: 1002.1978.Google Scholar
  67. 67.
    B. Li, Z. H. Yu, and S. M. Fei, Sci. Rep. 3, 2594 (2013), arXiv: 1309.3357.Google Scholar
  68. 68.
    E. V. Moreva, G. A. Maslennikov, S. S. Straupe, and S. P. Kulik, Phys. Rev. Lett. 97, 023602 (2006).ADSGoogle Scholar
  69. 69.
    T. Gaebel, M. Domhan, I. Popa, C. Wittmann, P. Neumann, F. Jelezko, J. R. Rabeau, N. Stavrias, A. D. Greentree, S. Prawer, J. Meijer, J. Twamley, P. R. Hemmer, and J. Wrachtrup, Nat. Phys. 2, 408 (2006).Google Scholar
  70. 70.
    F. Mintert, A. R. R. Carvalho, M. Kuś, and A. Buchleitner, Phys. Rep. 419, 143 (2005).ADSMathSciNetGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Low-Dimensional Quantum Physics and Department of PhysicsTsinghua UniversityBeijingChina
  2. 2.School of ScienceTianjin University of TechnologyianjinChina
  3. 3.Institute of SoftwareChinese Academy of SciencesBeijingChina

Personalised recommendations