Shock-stable flux scheme for predicting aerodynamic heating load of hypersonic airliners

  • Feng Qu
  • WeiXuan Kong
  • Di Sun
  • JunQiang BaiEmail author


In the design of a hypersonic airliner that can considerably shorten the flight time, how to accurately predict the vehicle’s aerodynamic heating loads is of great significance. In this study, a new shock-stable flux scheme called the simple low dissipation advection upwind splitting method (SLAU)-M1 is proposed for the prediction of hypersonic aerodynamic heating load. Based on the construction of the SLAU scheme for low-speed simulations, SLAU-M1 improves the robustness of the mass flux against shock instability. After validating the code employed, several numerical test cases are conducted. The one-dimensional (1D) sod shock tube case and the two-dimensional (2D) inviscid NACA0012 airfoil case show that SLAU-M1 features a high level of accuracy at both low and high speeds. To simulate the hypersonic viscous flow over a blunt cone, we adopt different aspect ratios (ARs) of cells near the shock. The results suggest that SLAU-M1 is much less sensitive to the AR of cells near the shock in predicting hypersonic aerodynamic heating loads. Moreover, the findings show that the theoretical value is considerably better than that of the other schemes. The hypersonic viscous flow over a 2D double ellipsoid case and that over the Hypersonic Flight Experiment vehicle case also indicate that SLAU-M1 exhibits a considerably high level of accuracy in hypersonic heating predictions. These properties suggest that SLAU-M1 promises to be widely used in the accurate prediction of the aerodynamic heating loads of hypersonic airliners.


SLAU-M1 cell reynolds number aspect ratio hypersonic heating prediction computational fluid dynamics 


  1. 1.
    K. Cui, Y. Xiao, Y. Z. Xu, and G. L. Li, Sci. China-Phys. Mech. Astron. 61, 024722 (2018).ADSCrossRefGoogle Scholar
  2. 2.
    F. Qu, D. Sun, J. Bai, G. Zuo, and C. Yan, Int. J. Heat Mass Transfer 127, 7 (2018).CrossRefGoogle Scholar
  3. 3.
    Y. C. Hu, W. T. Bi, S. Y. Li, and Z. S. She, Sci. China-Phys. Mech. Astron. 60, 124711 (2017).ADSCrossRefGoogle Scholar
  4. 4.
    Q. Wang, J. P. Li, W. Zhao, and Z. L. Jiang, Sci. China-Phys. Mech. Astron. 59, 624701 (2016).CrossRefGoogle Scholar
  5. 5.
    W. Q. Tao, Advances in Computational Heat Transfer (Science Press, Beijing, 2002).Google Scholar
  6. 6.
    S. Tan, and Q. B. Li, Sci. China-Phys. Mech. Astron. 60, 114713 (2017).ADSCrossRefGoogle Scholar
  7. 7.
    F. Qu, J. Chen, D. Sun, J. Bai, and C. Yan, Comput. Math. Appl. 77, 1216 (2019).MathSciNetCrossRefGoogle Scholar
  8. 8.
    B. Xiong, X. Fan, Y. Wang, L. Zhou, and Y. Tao, Acta Astronaut. 141, 248 (2017).ADSCrossRefGoogle Scholar
  9. 9.
    G. H. Klopfer, and H. C. Yee, “Viscous hypersonic shock-on-shock interaction on blunt cowl lips”, AIAA Paper No. 1988-0233, 1988.Google Scholar
  10. 10.
    F. Qu, D. Sun, and G. Zuo, Acta Astronaut. 147, 412 (2018).ADSCrossRefGoogle Scholar
  11. 11.
    F. Qu, C. Yan, and D. Sun, Int. Commun. Heat Mass Transfer 70, 53 (2016).CrossRefGoogle Scholar
  12. 12.
    F. Qu, J. Chen, D. Sun, J. Bai, and G. Zuo, Aerosp. Sci. Tech. 86, 659 (2019).CrossRefGoogle Scholar
  13. 13.
    K. Kitamura, E. Shima, Y. Nakamura, and P. L. Roe, AIAA J. 48, 763 (2010).ADSCrossRefGoogle Scholar
  14. 14.
    F. Qu, C. Yan, J. Yu, and D. Sun, Sci. China Technol. Sci. 57, 1183 (2014).CrossRefGoogle Scholar
  15. 15.
    F. Qu, C. Yan, D. Sun, and Z. Jiang, Comput. Fluids 121, 11 (2015).MathSciNetCrossRefGoogle Scholar
  16. 16.
    F. Qu, D. Sun, and C. Yan, Commun. Nonlinear Sci. Numer. Simul. 57, 58 (2018).ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    K. Kitamura, E. Shima, and P. L. Roe, AIAA J. 50, 2655 (2012).ADSCrossRefGoogle Scholar
  18. 18.
    H. Zhu, and S. Fu, Sci. China-Phys. Mech. Astron. 60, 104712 (2017).ADSCrossRefGoogle Scholar
  19. 19.
    E. F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics (Springer Verlag, Berlin, 1999).CrossRefzbMATHGoogle Scholar
  20. 20.
    B. Pan, L. J. Ma, and Y. Xia, Sci. China-Phys. Mech. Astron. 59, 614601 (2016).CrossRefGoogle Scholar
  21. 21.
    Z. Chen, C. P. Yu, L. Li, and X. L. Li, Sci. China-Phys. Mech. Astron. 59, 664702 (2016).CrossRefGoogle Scholar
  22. 22.
    N. N. Smirnov, O. G. Penyazkov, K. L. Sevrouk, V. F. Nikitin, L. I. Stamov, and V. V. Tyurenkova, Acta Astronaut. 135, 114 (2017).ADSCrossRefGoogle Scholar
  23. 23.
    M. Parenteau, É. Laurendeau, and G. Carrier, Aerospace Sci. Tech. 76, 484 (2018).CrossRefGoogle Scholar
  24. 24.
    F. R. Menter, AIAA J. 32, 1598 (1994).ADSCrossRefGoogle Scholar
  25. 25.
    P. L. Roe, J. Comput. Phys. 43, 357 (1981).ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    F. Qu, C. Yan, D. Sun, and W. Yuan, Sci. China Technol. Sci. 58, 434 (2015).CrossRefGoogle Scholar
  27. 27.
    G. C. Zha, Y. Shen, and B. Wang, Comput. Fluids 48, 214 (2011).MathSciNetCrossRefGoogle Scholar
  28. 28.
    K. Kitamura, and E. Shima, AIAA J. 49, 1693 (2010).Google Scholar
  29. 29.
    M. S. Liou, J. Comput. Phys. 160, 623 (2000).ADSCrossRefGoogle Scholar
  30. 30.
    S. Kim, C. Kim, O. H. Rho, and S. Kyu Hong, J. Comput. Phys. 185, 342 (2003).ADSMathSciNetCrossRefGoogle Scholar
  31. 31.
    B. Einfeldt, P. L. Roe, C. D. Munz, and B. Sjogreen, J. Comput. Phys. 92, 273 (1991).ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    S. Yoon, and A. Jameson, AIAA J. 9, 26 (1988).Google Scholar
  33. 33.
    W. Kordulla, J. Periaux, and T. A. de Roquefort, in Attempt to Evaluate the Computations for Test Case 6.1: Cold Hypersonic Flow Past Ellipsoidal Shapes, Hypersonic Flows for Reentry Problems, edited by J. A. Désidéri, R. Glowinski, and J. Périaux (Springer, Berlin, 1991), p. 689.Google Scholar
  34. 34.
    M. Shirouzu, and M. Yamamoto, “Overview of the HYFLEX project”, AIAA Paper No. 1996-4524, 1996.Google Scholar
  35. 35.
    K. Murakami, “CFD analysis of aerodynamic heating for HYFLEX high enthalpy flow tests”, ICAS Paper, 2004.Google Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of AeronauticsNorthwestern Polytechnical UniversityXi’anChina
  2. 2.Beijing Institute of Space Long March VehicleBeijingChina

Personalised recommendations