Advertisement

Constraining the non-Einsteinian polarizations of gravitational waves by pulsar timing array

  • Rui NiuEmail author
  • Wen ZhaoEmail author
Article

Abstract

Pulsar timing array (PTA) provides an excellent opportunity to detect the gravitational waves (GWs) in nanoHertz frequency band. In particular, due to the larger number of “arms” in PTA, it can be used to test gravity by probing the non-Einsteinian polarization modes of GWs, including two spin-1 shear modes labeled by “sn” and “se”, the spin-0 transverse mode labeled by “b” and the longitudinal mode labeled by “l”. In this paper, we investigate the capabilities of the current and potential future PTAs, which are quantified by the constraints on the amplitudes parameters (cb, csn, cse, cl), by observing an individual supermassive black hole binary in Virgo cluster. We find that for binary with total mass Mc = 8.77 × 108M and GW frequency f = 10−9 Hz, the PTA at current level can detect these GW modes if cb > 0.00106, cl > 0.00217, cse > 0.00271, csn > 0.00141, which will be improved by about two orders if considering the potential PTA in SKA era. Interesting enough, due to effects of the geometrical factors, we find that in SKA era, the constraints on the l, sn, se modes of GWs are purely dominated by several pulsars, instead of the full pulsars in PTA.

Keywords

gravitational waves pulsar timing array 

References

  1. 1.
    C. M. Will, Liv. Rev. Relativ. 9, 3 (2006).ADSCrossRefGoogle Scholar
  2. 2.
    C. M. Will, Theory and Experiment in Gravitational Physics (Cambridge University Press, Cambridge, 2018).CrossRefzbMATHGoogle Scholar
  3. 3.
    X. Zhang, J. Yu, T. Liu, W. Zhao, and A. Wang, Phys. Rev. D 95, 124008 (2017), arXiv: 1703.09853.ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    T. Liu, X. Zhang, W. Zhao, K. Lin, C. Zhang, S. Zhang, X. Zhao, T. Zhu, and A. Wang, Phys. Rev. D 98, 083023 (2018), arXiv: 1806.05674.ADSCrossRefGoogle Scholar
  5. 5.
    B. P. Abbott, et al. (LIGO Scientific Collaboration and Virgo Collaboration), Phys. Rev. Lett. 116, 061102 (2016), arXiv: 1602.03837.ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    B. P. Abbott, et al. (LIGO Scientific Collaboration and Virgo Collaboration), Phys. Rev. Lett. 116, 241103 (2016), arXiv: 1606.04855.ADSCrossRefGoogle Scholar
  7. 7.
    B. P. Abbott, et al. (LIGO Scientific Collaboration and Virgo Collaboration), Phys. Rev. Lett. 118, 221101 (2017), arXiv: 1706.01812.ADSCrossRefGoogle Scholar
  8. 8.
    B. P. Abbott, et al. (LIGO Scientific Collaboration and Virgo Collaboration), Phys. Rev. Lett. 119, 141101 (2017), arXiv: 1709.09660.ADSCrossRefGoogle Scholar
  9. 9.
    B. P. Abbott, et al. (LIGO Scientific Collaboration and Virgo Collaboration), Phys. Rev. Lett. 119, 161101 (2017), arXiv: 1710.05832.ADSCrossRefGoogle Scholar
  10. 10.
    B. P. Abbott, et al. (LIGO Scientific Collaboration and Virgo Collaboration), Astrophys. J. 851, L35 (2017), arXiv: 1711.05578.ADSCrossRefGoogle Scholar
  11. 11.
    J. Li, and X. L. Fan, Sci. China-Phys. Mech. Astron. 60, 120431 (2017).ADSCrossRefGoogle Scholar
  12. 12.
    H. Gao, Sci. China-Phys. Mech. Astron. 61, 059531 (2018).ADSCrossRefGoogle Scholar
  13. 13.
    M. V. Sazhin, Sov. Astron. 22, 36 (1978).ADSGoogle Scholar
  14. 14.
    S. Detweiler, Astrophys. J. 234, 1100 (1979).ADSCrossRefGoogle Scholar
  15. 15.
    K. J. Lee, F. A. Jenet, and R. H. Price, Astrophys. J. 685, 1304 (2008).ADSCrossRefGoogle Scholar
  16. 16.
    M. Anholm, S. Ballmer, J. D. E. Creighton, L. R. Price, and X. Siemens, Phys. Rev. D 79, 084030 (2009), arXiv: 0809.0701.ADSCrossRefGoogle Scholar
  17. 17.
    D. Hansen, N. Yunes, and K. Yagi, Phys. Rev. D 91, 082003 (2015), arXiv: 1412.4132.ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    J. Simon, A. Polin, A. Lommen, B. Stappers, L. S. Finn, F. A. Jenet, and B. Christy, Astrophys. J. 784, 60 (2014), arXiv: 1402.1140.ADSCrossRefGoogle Scholar
  19. 19.
    X. J. Zhu, L. Wen, J. Xiong, Y. Xu, Y. Wang, S. D. Mohanty, G. Hobbs, and R. N. Manchester, Mon. Not. R. Astron. Soc. 461, 1317 (2016), arXiv: 1606.04539.ADSCrossRefGoogle Scholar
  20. 20.
    B. B. P. Perera, B. W. Stappers, S. Babak, M. J. Keith, J. Antoniadis, C. G. Bassa, R. N. Caballero, D. J. Champion, I. Cognard, G. Desvignes, E. Graikou, L. Guillemot, G. H. Janssen, R. Karuppusamy, M. Kramer, P. Lazarus, L. Lentati, K. Liu, A. G. Lyne, J. W. McKee, S. Osłowski, D. Perrodin, S. A. Sanidas, A. Sesana, G. Shaifullah, G. Theureau, J. P. W. Verbiest, and S. R. Taylor, Mon. Not. R. Astron. Soc. 478, 218 (2018), arXiv: 1804.10571.ADSCrossRefGoogle Scholar
  21. 21.
    R. N. Manchester, G. B. Hobbs, A. Teoh, and M. Hobbs, Astrophys. J. 129, 1993 (2005).ADSGoogle Scholar
  22. 22.
    R. Smits, M. Kramer, B. Stappers, D. R. Lorimer, J. Cordes, and A. Faulkner, Astron. Astrophys. 493, 1161 (2009), arXiv: 0811.0211.ADSCrossRefGoogle Scholar
  23. 23.
    Y. Wang, and S. D. Mohanty, Phys. Rev. Lett. 118, 151104 (2017), arXiv: 1611.09440.ADSCrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.CAS Key Laboratory for Researches in Galaxies and Cosmology, Department of AstronomyUniversity of Science and Technology of ChinaHefeiChina
  2. 2.School of Astronomy and Space ScienceUniversity of Science and Technology of ChinaHefeiChina

Personalised recommendations