Advertisement

Turning ZrTe5 into a semiconductor through atom intercalation

  • QiYuan Li
  • YangYang Lv
  • JingHui Wang
  • Song Bao
  • Wei Shi
  • Li Zhu
  • WeiMin Zhao
  • ChengLong Xue
  • ZhenYu Jia
  • LiBo Gao
  • YanBin Chen
  • JinSheng Wen
  • YanFeng Chen
  • ShaoChun LiEmail author
Article
  • 95 Downloads

Abstract

In this study we successfully intercalated potassium (K) atoms into single ZrTe5 crystals by liquid ammonia method, and found a semimetal-to-semiconductor transition at low temperatures in K-intercalated ZrTe5. As the K concentration increased, the resistance anomalous peak was gradually suppressed until finally disappearing. Whilst, the corresponding Hall resistance measurements consistently showed a sign reversal. The semimetal-to-semiconductor transition can be attributed to a lattice expansion induced by atom intercalation, leading to a larger energy band gap.

Keywords

ZrTe5 atom intercalation topological insulator magnetoresistance Hall resistance 

References

  1. 1.
    S. Okada, T. Sambongi, and M. Ido, J. Phys. Soc. Jpn. 49, 839 (1980).ADSCrossRefGoogle Scholar
  2. 2.
    T. E. Jones, W. W. Fuller, T. J. Wieting, and F. Levy, Solid State Commun. 42, 793 (1982).ADSCrossRefGoogle Scholar
  3. 3.
    G. N. Kamm, D. J. Gillespie, A. C. Ehrlich, T. J. Wieting, and F. Levy, Phys. Rev.. 31, 7617 (1985).ADSCrossRefGoogle Scholar
  4. 4.
    M. Izumi, T. Nakayama, K. Uchinokura, S. Harada, R. Yoshizaki, and E. Matsuura, J. Phys. C-Solid State Phys. 20, 3691 (1987).ADSCrossRefGoogle Scholar
  5. 5.
    E. P. Stillwell, A. C. Ehrlich, G. N. Kamm, and D. J. Gillespie, Phys. Rev.. 39, 1626 (1989).ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    R. T. Littleton IV, T. M. Tritt, J. W. Kolis, and D. R. Ketchum, Phys. Rev.. 60, 13453 (1999).CrossRefGoogle Scholar
  7. 7.
    M. Rubinstein, Phys. Rev.. 60, 1627 (1999).ADSCrossRefGoogle Scholar
  8. 8.
    T. M. Tritt, N. D. Lowhorn, R. T. Littleton IV, A. Pope, C. R. Feger, and J. W. Kolis, Phys. Rev.. 60, 7816 (1999).ADSCrossRefGoogle Scholar
  9. 9.
    H. Weng, X. Dai, and Z. Fang, Phys. Rev.. 4, 011002 (2014), arXiv: 1309.7529.CrossRefGoogle Scholar
  10. 10.
    Z. Fan, Q. F. Liang, Y. B. Chen, S. H. Yao, and J. Zhou, Sci. Rep. 7, 45667 (2017), arXiv: 1611.04263.ADSCrossRefGoogle Scholar
  11. 11.
    J. Mutch, W. C. Chen, P. Went, T. Qian, I. Z. Wilson, A. Andreev, C. C. Chen, and J. H. Chu,. arXiv: 1808.07898Google Scholar
  12. 12.
    R. Y. Chen, Z. G. Chen, X. Y. Song, J. A. Schneeloch, G. D. Gu, F. Wang, and N. L. Wang, Phys. Rev. Lett. 115, 176404 (2015), arXiv: 1506.08676.ADSCrossRefGoogle Scholar
  13. 13.
    R. Y. Chen, S. J. Zhang, J. A. Schneeloch, C. Zhang, Q. Li, G. D. Gu, and N. L. Wang, Phys. Rev.. 92, 075107 (2015), arXiv: 1505.00307.CrossRefGoogle Scholar
  14. 14.
    X. B. Li, W. K. Huang, Y. Y. Lv, K. W. Zhang, C. L. Yang, B. B. Zhang, Y. B. Chen, S. H. Yao, J. Zhou, M. H. Lu, L. Sheng, S. C. Li, J. F. Jia, Q. K. Xue, Y. F. Chen, and D. Y. Xing, Phys. Rev. Lett. 116, 176803 (2016).ADSCrossRefGoogle Scholar
  15. 15.
    R. Wu, J. Z. Ma, S. M. Nie, L. X. Zhao, X. Huang, J. X. Yin, B. B. Fu, P. Richard, G. F. Chen, Z. Fang, X. Dai, H. M. Weng, T. Qian, H. Ding, and S. H. Pan, Phys. Rev.. 6, 021017 (2016).CrossRefGoogle Scholar
  16. 16.
    Q. Li, D. E. Kharzeev, C. Zhang, Y. Huang, I. Pletikosic, A. V. Fedorov, R. D. Zhong, J. A. Schneeloch, G. D. Gu, and T. Valla, Nat. Phys. 12, 550 (2016), arXiv: 1412.6543.CrossRefGoogle Scholar
  17. 17.
    X. Yuan, C. Zhang, Y. Liu, A. Narayan, C. Song, S. Shen, X. Sui, J. Xu, H. Yu, Z. An, J. Zhao, S. Sanvito, H. Yan, and F. Xiu, NPG Asia Mater. 8, e325 (2016).Google Scholar
  18. 18.
    G. Zheng, J. Lu, X. Zhu, W. Ning, Y. Han, H. Zhang, J. Zhang, C. Xi, J. Yang, H. Du, K. Yang, Y. Zhang, and M. Tian, Phys. Rev.. 93, 115414 (2016), arXiv: 1603.05351.CrossRefGoogle Scholar
  19. 19.
    W. Yu, Y. Jiang, J. Yang, Z. L. Dun, H. D. Zhou, Z. Jiang, P. Lu, and W. Pan, Sci. Rep. 6, 35357 (2016), arXiv: 1602.06824.ADSCrossRefGoogle Scholar
  20. 20.
    Y. Liu, X. Yuan, C. Zhang, Z. Jin, A. Narayan, C. Luo, Z. Chen, L. Yang, J. Zou, X. Wu, S. Sanvito, Z. Xia, L. Li, Z. Wang, and F. Xiu, Nat. Commun. 7, 12516 (2016).ADSCrossRefGoogle Scholar
  21. 21.
    G. Manzoni, L. Gragnaniello, G. Autès, T. Kuhn, A. Sterzi, F. Cilento, M. Zacchigna, V. Enenkel, I. Vobornik, L. Barba, F. Bisti, P. Bugnon, A. Magrez, V. N. Strocov, H. Berger, O. V. Yazyev, M. Fonin, F. Parmigiani, and A. Crepaldi, Phys. Rev. Lett. 117, 237601 (2016), arXiv: 1608.03433.ADSCrossRefGoogle Scholar
  22. 22.
    L. Moreschini, J. C. Johannsen, H. Berger, J. Denlinger, C. Jozwiack, E. Rotenberg, K. S. Kim, A. Bostwick, and M. Grioni, Phys. Rev.. 94, 081101 (2016).CrossRefGoogle Scholar
  23. 23.
    Z. G. Chen, R. Y. Chen, R. D. Zhong, J. Schneeloch, C. Zhang, Y. Huang, F. Qu, R. Yu, Q. Li, G. D. Gu, and N. L. Wang, Proc. Natl. Acad. Sci. 114, 816 (2017), arXiv: 1701.07726.ADSCrossRefGoogle Scholar
  24. 24.
    Y. X. Wang, Eur. Phys. J.. 90, 99 (2017).ADSCrossRefGoogle Scholar
  25. 25.
    Y. Jiang, Z. L. Dun, H. D. Zhou, Z. Lu, K. W. Chen, S. Moon, T. Besara, T. M. Siegrist, R. E. Baumbach, D. Smirnov, and Z. Jiang, Phys. Rev.. 96, 041101 (2017), arXiv: 1703.08193.CrossRefGoogle Scholar
  26. 26.
    Y. Zhang, C. Wang, L. Yu, G. Liu, A. Liang, J. Huang, S. Nie, X. Sun, Y. Zhang, B. Shen, J. Liu, H. Weng, L. Zhao, G. Chen, X. Jia, C. Hu, Y. Ding, W. Zhao, Q. Gao, C. Li, S. He, L. Zhao, F. Zhang, S. Zhang, F. Yang, Z. Wang, Q. Peng, X. Dai, Z. Fang, Z. Xu, C. Chen, and X. J. Zhou, Nat. Commun. 8, 15512 (2017), arXiv: 1602.03576.ADSCrossRefGoogle Scholar
  27. 27.
    G. Manzoni, A. Crepaldi, G. Autès, A. Sterzi, F. Cilento, A. Akrap, I. Vobornik, L. Gragnaniello, P. Bugnon, M. Fonin, H. Berger, M. Zacchigna, O. V. Yazyev, and F. Parmigiani, J. Electron Spectr. Related Phenom. 219, 9 (2017).Google Scholar
  28. 28.
    L. Shen, M. X. Wang, S. C. Sun, J. Jiang, X. Xu, T. Zhang, Q. H. Zhang, Y. Y. Lv, S. H. Yao, Y. B. Chen, M. H. Lu, Y. F. Chen, C. Felser, B. H. Yan, Z. K. Liu, L. X. Yang, and Y. L. Chen, J. Electron Spectr. Related Phenom. 219, 45 (2017).CrossRefGoogle Scholar
  29. 29.
    H. Xiong, J. A. Sobota, S. L. Yang, H. Soifer, A. Gauthier, M. H. Lu, Y. Y. Lv, S. H. Yao, D. Lu, M. Hashimoto, P. S. Kirchmann, Y. F. Chen, and Z. X. Shen, Phys. Rev.. 95, 195119 (2017), arXiv: 1704.05161.CrossRefGoogle Scholar
  30. 30.
    Y. Y. Lv, B. B. Zhang, X. Li, K. W. Zhang, X. B. Li, S. H. Yao, Y. B. Chen, J. Zhou, S. T. Zhang, M. H. Lu, S. C. Li, and Y. F. Chen, Phys. Rev.. 97, 115137 (2018).CrossRefGoogle Scholar
  31. 31.
    N. L. Nair, P. T. Dumitrescu, S. Channa, S. M. Griffin, J. B. Neaton, A. C. Potter, and J. G. Analytis, Phys. Rev.. 97, 041111 (2018).ADSCrossRefGoogle Scholar
  32. 32.
    W. Wang, X. Zhang, H. Xu, Y. Zhao, W. Zou, L. He, and Y. Xu, Sci. Rep. 8, 5125 (2018).ADSCrossRefGoogle Scholar
  33. 33.
    G. Zheng, X. Zhu, Y. Liu, J. Lu, W. Ning, H. Zhang, W. Gao, Y. Han, J. Yang, H. Du, K. Yang, Y. Zhang, and M. Tian, Phys. Rev.. 96, 121401 (2017), arXiv: 1607.05384.ADSCrossRefGoogle Scholar
  34. 34.
    J. Wang, J. Niu, B. Yan, X. Li, R. Bi, Y. Yao, D. Yu, and X. Wu, Proc. Natl. Acad. Sci. 115, 9145 (2018).ADSCrossRefGoogle Scholar
  35. 35.
    F. D. Tang, Y. R. Ren, P. P. Wang, R. D. Zhong, J. Schneeloch, S. A. Yang, K. Yang, P. A. Lee, G. Gu, Z. Qiao, L. Zhang,. arXiv: 1807.02678Google Scholar
  36. 36.
    T. Liang, J. Lin, Q. Gibson, S. Kushwaha, M. Liu, W. Wang, H. Xiong, J. A. Sobota, M. Hashimoto, P. S. Kirchmann, Z. X. Shen, R. J. Cava, and N. P. Ong, Nat. Phys. 14, 451 (2018).CrossRefGoogle Scholar
  37. 37.
    P. Li, C. H. Zhang, J. W. Zhang, Y. Wen, and X. X. Zhang, Phys. Rev.. 98, 121108 (2018), arXiv: 1803.01213.ADSCrossRefGoogle Scholar
  38. 38.
    H. Wang, H. Liu, Y. Li, Y. Liu, J. Wang, J. Liu, J. Y. Dai, Y. Wang, L. Li, J. Yan, D. Mandrus, X. C. Xie, and J. Wang, Sci. Adv. 4, eaau5096 (2018), arXiv: 1704.00995.Google Scholar
  39. 39.
    H. W. Liu, H. Jiang, Z. Q. Wang, R. Joynt, and X. C. Xie,. arXiv: 1807.02459Google Scholar
  40. 40.
    Y. Zhou, J. Wu, W. Ning, N. Li, Y. Du, X. Chen, R. Zhang, Z. Chi, X. Wang, X. Zhu, P. Lu, C. Ji, X. Wan, Z. Yang, J. Sun, W. Yang, M. Tian, Y. Zhang, and H. K. Mao, Proc. Natl. Acad. Sci. 113, 2904 (2016), arXiv: 1505.02658.ADSCrossRefGoogle Scholar
  41. 41.
    J. L. Zhang, C. Y. Guo, X. D. Zhu, L. Ma, G. L. Zheng, Y. Q. Wang, L. Pi, Y. Chen, H. Q. Yuan, and M. L. Tian, Phys. Rev. Lett. 118, 206601 (2017), arXiv: 1701.03283.ADSCrossRefGoogle Scholar
  42. 42.
    J. Lu, G. Zheng, X. Zhu, W. Ning, H. Zhang, J. Yang, H. Du, K. Yang, H. Lu, Y. Zhang, and M. Tian, Phys. Rev.. 95, 125135 (2017), arXiv: 1611.08679.CrossRefGoogle Scholar
  43. 43.
    J. Niu, J. Wang, Z. He, C. Zhang, X. Li, T. Cai, X. Ma, S. Jia, D. Yu, and X. Wu, Phys. Rev.. 95, 035420 (2017), arXiv: 1511.09315.ADSCrossRefGoogle Scholar
  44. 44.
    P. Shahi, D. J. Singh, J. P. Sun, L. X. Zhao, G. F. Chen, Y. Y. Lv, J. Li, J. Q. Yan, D. G. Mandrus, and J. G. Cheng, Phys. Rev.. 8, 021055 (2018).CrossRefGoogle Scholar
  45. 45.
    Y. Y. Lv, F. Zhang, B. B. Zhang, B. Pang, S. H. Yao, Y. B. Chen, L. Ye, J. Zhou, S. T. Zhang, and Y. F. Chen, J. Cryst. Growth 457, 250 (2017).ADSCrossRefGoogle Scholar
  46. 46.
    T. Ying, X. Chen, G. Wang, S. Jin, X. Lai, T. Zhou, H. Zhang, S. Shen, and W. Wang, J. Am. Chem. Soc. 135, 2951 (2013).CrossRefGoogle Scholar
  47. 47.
    L. Zhu, Q. Y. Li, Y. Y. Lv, S. Li, X. Y. Zhu, Z. Y. Jia, Y. B. Chen, J. Wen, and S. C. Li, Nano Lett. 18, 6585 (2018).ADSCrossRefGoogle Scholar
  48. 48.
    H. Fjellvåg, and A. Kjekshus, Solid State Commun. 60, 91 (1986).ADSCrossRefGoogle Scholar
  49. 49.
    H. Z. Lu, and S. Q. Shen, Phys. Rev.. 92, 035203 (2015), arXiv: 1411.2686.CrossRefGoogle Scholar
  50. 50.
    G. Qiu, Y. Du, A. Charnas, H. Zhou, S. Jin, Z. Luo, D. Y. Zemlyanov, X. Xu, G. J. Cheng, and P. D. Ye, Nano Lett. 16, 7364 (2016), arXiv: 1606.07960.ADSCrossRefGoogle Scholar
  51. 51.
    I. Taguchi, A. Grisel, and F. Levy, Solid State Commun. 46, 299 (1983).ADSCrossRefGoogle Scholar
  52. 52.
    A. Zwick, G. Landa, R. Carles, M. A. Renucci, and A. Kjekshus, Solid State Commun. 44, 89 (1982).ADSCrossRefGoogle Scholar
  53. 53.
    R. B. Somoano, V. Hadek, and A. Rembaum, J. Chem. Phys. 58, 697 (1973).ADSCrossRefGoogle Scholar
  54. 54.
    M. Fujioka, C. Wu, N. Kubo, G. Zhao, A. Inoishi, S. Okada, S. Demura, H. Sakata, M. Ishimaru, H. Kaiju, and J. Nishii, J. Am. Chem. Soc. 139, 17987 (2017).CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • QiYuan Li
    • 1
  • YangYang Lv
    • 2
  • JingHui Wang
    • 1
  • Song Bao
    • 1
  • Wei Shi
    • 1
  • Li Zhu
    • 1
  • WeiMin Zhao
    • 1
  • ChengLong Xue
    • 1
  • ZhenYu Jia
    • 1
  • LiBo Gao
    • 1
    • 3
  • YanBin Chen
    • 1
    • 3
  • JinSheng Wen
    • 1
    • 3
  • YanFeng Chen
    • 2
    • 3
  • ShaoChun Li
    • 1
    • 3
    Email author
  1. 1.National Laboratory of Solid State Microstructures, School of PhysicsNanjing UniversityNanjingChina
  2. 2.National Laboratory of Solid State Microstructures, Department of Materials Science and EngineeringNanjing UniversityNanjingChina
  3. 3.Collaborative Innovation Center of Advanced MicrostructuresNanjing UniversityNanjingChina

Personalised recommendations