Advertisement

Qubit-assisted squeezing of mirror motion in a dissipative cavity optomechanical system

  • Cheng-Hua Bai
  • Dong-Yang Wang
  • Shou ZhangEmail author
  • Hong-Fu WangEmail author
Article
  • 3 Downloads

Abstract

In this study, we investigate a hybrid system consisting of an atomic ensemble trapped inside a dissipative optomechanical cavity assisted with perturbative oscillator-qubit coupling. Such a system is generally very suitable for generating stationary squeezing of the mirror motion in the long-time limit under the unresolved sideband regime. Based on the master equation and covariance matrix approaches, we discuss in detail the respective squeezing effects. We also determine that in both approaches, simplifying the system dynamics with adiabatic elimination of the highly dissipative cavity mode is very effective. In the master equation approach, we find that the squeezing is a resulting effect of the cooling process and is robust against thermal fluctuations of the mechanical mode. In the covariance matrix approach, we can approximately obtain the analytical result of the steady-state mechanical position variance from the reduced dynamical equation. Finally, we compare the two approaches and observe that they are completely equivalent for the stationary dynamics. Moreover, the scheme may be useful for possible ultraprecise quantum measurement that involves mechanical squeezing.

Keywords

mechanical squeezing master equation covariance matrix 

References

  1. 1.
    M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, Rev. Mod. Phys. 86, 1391 (2014), arXiv: 1303.0733.ADSCrossRefGoogle Scholar
  2. 2.
    I. Wilson-Rae, N. Nooshi, W. Zwerger, and T. J. Kippenberg, Phys. Rev. Lett. 99, 093901 (2007).ADSCrossRefGoogle Scholar
  3. 3.
    F. Marquardt, J. P. Chen, A. A. Clerk, and S. M. Girvin, Phys. Rev. Lett. 99, 093902 (2007).ADSCrossRefGoogle Scholar
  4. 4.
    Y. Guo, K. Li, W. Nie, and Y. Li, Phys. Rev. A 90, 053841 (2014), arXiv: 1407.5202.ADSCrossRefGoogle Scholar
  5. 5.
    Y. C. Liu, Y. F. Xiao, X. Luan, and C. W. Wong, Sci. China-Phys. Mech. Astron. 58, 050305 (2015), arXiv: 1504.04497.Google Scholar
  6. 6.
    D. Y.Wang, C. H. Bai, S. Liu, S. Zhang, and H. F.Wang, Phys. Rev. A 98, 023816 (2018), arXiv: 1811.05645.ADSCrossRefGoogle Scholar
  7. 7.
    R. X. Chen, L. T. Shen, Z. B. Yang, H. Z. Wu, and S. B. Zheng, Phys. Rev. A 89, 023843 (2014).ADSCrossRefGoogle Scholar
  8. 8.
    Y. Yan, W. J. Gu, and G. X. Li, Sci. China-Phys. Mech. Astron. 58, 050306 (2015).Google Scholar
  9. 9.
    Z. R. Zhong, X. Wang, and W. Qin, Front. Phys. 13, 130319 (2018).CrossRefGoogle Scholar
  10. 10.
    W. Xiong, D. Y. Jin, Y. Qiu, C. H. Lam, and J. Q. You, Phys. Rev. A 93, 023844 (2016), arXiv: 1511.04518.ADSCrossRefGoogle Scholar
  11. 11.
    C. Jiang, Z. Y. Zhai, Y. S. Cui, and G. B. Chen, Sci. China-Phys. Mech. Astron. 60, 010311 (2017).ADSCrossRefGoogle Scholar
  12. 12.
    C. Kong, H. Xiong, and Y. Wu, Phys. Rev. A 95, 033820 (2017).ADSCrossRefGoogle Scholar
  13. 13.
    X. R. Xiong, Y. P. Gao, X. F. Liu, C. Cao, T. J. Wang, and C. Wang, Sci. China-Phys. Mech. Astron. 61, 090322 (2018).CrossRefGoogle Scholar
  14. 14.
    Q. Song, K. Y. Zhang, Y. Dong, and W. P. Zhang, Sci. China-Phys. Mech. Astron. 61, 050311 (2018).ADSCrossRefGoogle Scholar
  15. 15.
    K. Li, S. Davuluri, and Y. Li, Sci. China-Phys. Mech. Astron. 61, 090311 (2018).CrossRefGoogle Scholar
  16. 16.
    M. Aspelmeyer, P. Meystre, and K. Schwab, Phys. Today 65, 29 (2012).CrossRefGoogle Scholar
  17. 17.
    W. H. Zurek, Phys. Today 44, 36 (1991).CrossRefGoogle Scholar
  18. 18.
    C. M. Caves, K. S. Thorne, R. W. P. Drever, V. D. Sandberg, and M. Zimmermann, Rev. Mod. Phys. 52, 341 (1980).ADSCrossRefGoogle Scholar
  19. 19.
    A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gursel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, and M. E. Zucker, Science 256, 325 (1992).ADSCrossRefGoogle Scholar
  20. 20.
    B. C. Barish, and R. Weiss, Phys. Today 52, 44 (1999).CrossRefGoogle Scholar
  21. 21.
    G. S. Agarwal, and S. A. Kumar, Phys. Rev. Lett. 67, 3665 (1991).ADSCrossRefGoogle Scholar
  22. 22.
    A. Mari, and J. Eisert, Phys. Rev. Lett. 103, 213603 (2009), arXiv: 0911.0433.ADSCrossRefGoogle Scholar
  23. 23.
    J. Q. Liao, and C. K. Law, Phys. Rev. A 83, 033820 (2011), arXiv: 1101.5655.ADSCrossRefGoogle Scholar
  24. 24.
    W. Gu, and G. Li, Opt. Express 21, 20423 (2013).ADSCrossRefGoogle Scholar
  25. 25.
    C. G. Liao, H. Xie, X. Shang, Z. H. Chen, and X. M. Lin, Opt. Express 26, 13783 (2018), arXiv: 1803.02004.ADSCrossRefGoogle Scholar
  26. 26.
    A. Kronwald, F. Marquardt, and A. A. Clerk, Phys. Rev. A 88, 063833 (2013), arXiv: 1307.5309.ADSCrossRefGoogle Scholar
  27. 27.
    K. Jähne, C. Genes, K. Hammerer, M. Wallquist, E. S. Polzik, and P. Zoller, Phys. Rev. A 79, 063819 (2009), arXiv: 0904.1306.ADSCrossRefGoogle Scholar
  28. 28.
    S. Huang, and G. S. Agarwal, Phys. Rev. A 82, 033811 (2010), arXiv: 1007.1620.ADSCrossRefGoogle Scholar
  29. 29.
    G. S. Agarwal, and S. Huang, Phys. Rev. A 93, 043844 (2016), arXiv: 1602.02214.ADSCrossRefGoogle Scholar
  30. 30.
    X. Y. Lű, J. Q. Liao, L. Tian, and F. Nori, Phys. Rev. A 91, 013834 (2015), arXiv: 1403.0049.ADSCrossRefGoogle Scholar
  31. 31.
    A. Nunnenkamp, K. Børkje, J. G. E. Harris, and S. M. Girvin, Phys. Rev. A 82, 021806 (2010), arXiv: 1004.2510.ADSCrossRefGoogle Scholar
  32. 32.
    M. Asjad, G. S. Agarwal, M. S. Kim, P. Tombesi, G. D. Giuseppe, and D. Vitali, Phys. Rev. A 89, 023849 (2014), arXiv: 1309.5485.ADSCrossRefGoogle Scholar
  33. 33.
    A. Dalafi, M. H. Naderi, and A. Motazedifard, Phys. Rev. A 97, 043619 (2018), arXiv: 1802.10394.ADSCrossRefGoogle Scholar
  34. 34.
    C. S. Hu, Z. B. Yang, H. Wu, Y. Li, and S. B. Zheng, Phys. Rev. A 98, 023807 (2018), arXiv: 1803.05147.ADSCrossRefGoogle Scholar
  35. 35.
    W. Y. Huo, and G. L. Long, Appl. Phys. Lett. 92, 133102 (2008).ADSCrossRefGoogle Scholar
  36. 36.
    J. M. Pirkkalainen, E. Damskägg, M. Brandt, F. Massel, and M. A. Sillanpää, Phys. Rev. Lett. 115, 243601 (2015), arXiv: 1507.04209.ADSCrossRefGoogle Scholar
  37. 37.
    M. O. Scully, and M. S. Zubairy, Quantum Optics (Cambridge University Press, Cambridge, England, 2001).zbMATHGoogle Scholar
  38. 38.
    S. Chakraborty, and A. K. Sarma, Ann. Phys. 392, 39 (2018).ADSCrossRefGoogle Scholar
  39. 39.
    H. Wang, X. Gu, Y. Liu, A. Miranowicz, and F. Nori, Phys. Rev. A 92, 033806 (2015), arXiv: 1506.03858.ADSCrossRefGoogle Scholar
  40. 40.
    H. Wang, X. Gu, Y. Liu, A. Miranowicz, and F. Nori, Phys. Rev. A 90, 023817 (2014), arXiv: 1402.2764.ADSCrossRefGoogle Scholar
  41. 41.
    M. D. LaHaye, J. Suh, P. M. Echternach, K. C. Schwab, and M. L. Roukes, Nature 459, 960 (2009).ADSCrossRefGoogle Scholar
  42. 42.
    X. Wang, A. Miranowicz, H. R. Li, F. L. Li, and F. Nori, Phys. Rev. A 98, 023821 (2018), arXiv: 1803.06513.ADSCrossRefGoogle Scholar
  43. 43.
    D. Vitali, S. Gigan, A. Ferreira, H. R. B¨ohm, P. Tombesi, A. Guerreiro, V. Vedral, A. Zeilinger, and M. Aspelmeyer, Phys. Rev. Lett. 98, 030405 (2007).ADSCrossRefGoogle Scholar
  44. 44.
    X. Chen, Y. C. Liu, P. Peng, Y. Zhi, and Y. F. Xiao, Phys. Rev. A 92, 033841 (2015).ADSCrossRefGoogle Scholar
  45. 45.
    V. Giovannetti, and D. Vitali, Phys. Rev. A 63, 023812 (2001).ADSCrossRefGoogle Scholar
  46. 46.
    F. Yoshihara, T. Fuse, S. Ashhab, K. Kakuyanagi, S. Saito, and K. Semba, Nat. Phys. 13, 44 (2016), arXiv: 1602.00415.CrossRefGoogle Scholar
  47. 47.
    T. Li, and Z. Q. Yin, Sci. Bull. 61, 163 (2016).CrossRefGoogle Scholar
  48. 48.
    S. Etaki, M. Poot, I. Mahboob, K. Onomitsu, H. Yamaguchi, and H. S. J. van der Zant, Nat. Phys. 4, 785 (2008).CrossRefGoogle Scholar
  49. 49.
    M. Abdi, P. Degenfeld-Schonburg, M. Sameti, C. Navarrete-Benlloch, and M. J. Hartmann, Phys. Rev. Lett. 116, 233604 (2016), arXiv: 1602.07922.ADSCrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsHarbin Institute of TechnologyHarbinChina
  2. 2.Department of Physics, College of ScienceYanbian UniversityYanjiChina

Personalised recommendations