Qubit-assisted squeezing of mirror motion in a dissipative cavity optomechanical system
- 3 Downloads
Abstract
In this study, we investigate a hybrid system consisting of an atomic ensemble trapped inside a dissipative optomechanical cavity assisted with perturbative oscillator-qubit coupling. Such a system is generally very suitable for generating stationary squeezing of the mirror motion in the long-time limit under the unresolved sideband regime. Based on the master equation and covariance matrix approaches, we discuss in detail the respective squeezing effects. We also determine that in both approaches, simplifying the system dynamics with adiabatic elimination of the highly dissipative cavity mode is very effective. In the master equation approach, we find that the squeezing is a resulting effect of the cooling process and is robust against thermal fluctuations of the mechanical mode. In the covariance matrix approach, we can approximately obtain the analytical result of the steady-state mechanical position variance from the reduced dynamical equation. Finally, we compare the two approaches and observe that they are completely equivalent for the stationary dynamics. Moreover, the scheme may be useful for possible ultraprecise quantum measurement that involves mechanical squeezing.
Keywords
mechanical squeezing master equation covariance matrixReferences
- 1.M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, Rev. Mod. Phys. 86, 1391 (2014), arXiv: 1303.0733.ADSCrossRefGoogle Scholar
- 2.I. Wilson-Rae, N. Nooshi, W. Zwerger, and T. J. Kippenberg, Phys. Rev. Lett. 99, 093901 (2007).ADSCrossRefGoogle Scholar
- 3.F. Marquardt, J. P. Chen, A. A. Clerk, and S. M. Girvin, Phys. Rev. Lett. 99, 093902 (2007).ADSCrossRefGoogle Scholar
- 4.Y. Guo, K. Li, W. Nie, and Y. Li, Phys. Rev. A 90, 053841 (2014), arXiv: 1407.5202.ADSCrossRefGoogle Scholar
- 5.Y. C. Liu, Y. F. Xiao, X. Luan, and C. W. Wong, Sci. China-Phys. Mech. Astron. 58, 050305 (2015), arXiv: 1504.04497.Google Scholar
- 6.D. Y.Wang, C. H. Bai, S. Liu, S. Zhang, and H. F.Wang, Phys. Rev. A 98, 023816 (2018), arXiv: 1811.05645.ADSCrossRefGoogle Scholar
- 7.R. X. Chen, L. T. Shen, Z. B. Yang, H. Z. Wu, and S. B. Zheng, Phys. Rev. A 89, 023843 (2014).ADSCrossRefGoogle Scholar
- 8.Y. Yan, W. J. Gu, and G. X. Li, Sci. China-Phys. Mech. Astron. 58, 050306 (2015).Google Scholar
- 9.Z. R. Zhong, X. Wang, and W. Qin, Front. Phys. 13, 130319 (2018).CrossRefGoogle Scholar
- 10.W. Xiong, D. Y. Jin, Y. Qiu, C. H. Lam, and J. Q. You, Phys. Rev. A 93, 023844 (2016), arXiv: 1511.04518.ADSCrossRefGoogle Scholar
- 11.C. Jiang, Z. Y. Zhai, Y. S. Cui, and G. B. Chen, Sci. China-Phys. Mech. Astron. 60, 010311 (2017).ADSCrossRefGoogle Scholar
- 12.C. Kong, H. Xiong, and Y. Wu, Phys. Rev. A 95, 033820 (2017).ADSCrossRefGoogle Scholar
- 13.X. R. Xiong, Y. P. Gao, X. F. Liu, C. Cao, T. J. Wang, and C. Wang, Sci. China-Phys. Mech. Astron. 61, 090322 (2018).CrossRefGoogle Scholar
- 14.Q. Song, K. Y. Zhang, Y. Dong, and W. P. Zhang, Sci. China-Phys. Mech. Astron. 61, 050311 (2018).ADSCrossRefGoogle Scholar
- 15.K. Li, S. Davuluri, and Y. Li, Sci. China-Phys. Mech. Astron. 61, 090311 (2018).CrossRefGoogle Scholar
- 16.M. Aspelmeyer, P. Meystre, and K. Schwab, Phys. Today 65, 29 (2012).CrossRefGoogle Scholar
- 17.W. H. Zurek, Phys. Today 44, 36 (1991).CrossRefGoogle Scholar
- 18.C. M. Caves, K. S. Thorne, R. W. P. Drever, V. D. Sandberg, and M. Zimmermann, Rev. Mod. Phys. 52, 341 (1980).ADSCrossRefGoogle Scholar
- 19.A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gursel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, and M. E. Zucker, Science 256, 325 (1992).ADSCrossRefGoogle Scholar
- 20.B. C. Barish, and R. Weiss, Phys. Today 52, 44 (1999).CrossRefGoogle Scholar
- 21.G. S. Agarwal, and S. A. Kumar, Phys. Rev. Lett. 67, 3665 (1991).ADSCrossRefGoogle Scholar
- 22.A. Mari, and J. Eisert, Phys. Rev. Lett. 103, 213603 (2009), arXiv: 0911.0433.ADSCrossRefGoogle Scholar
- 23.J. Q. Liao, and C. K. Law, Phys. Rev. A 83, 033820 (2011), arXiv: 1101.5655.ADSCrossRefGoogle Scholar
- 24.W. Gu, and G. Li, Opt. Express 21, 20423 (2013).ADSCrossRefGoogle Scholar
- 25.C. G. Liao, H. Xie, X. Shang, Z. H. Chen, and X. M. Lin, Opt. Express 26, 13783 (2018), arXiv: 1803.02004.ADSCrossRefGoogle Scholar
- 26.A. Kronwald, F. Marquardt, and A. A. Clerk, Phys. Rev. A 88, 063833 (2013), arXiv: 1307.5309.ADSCrossRefGoogle Scholar
- 27.K. Jähne, C. Genes, K. Hammerer, M. Wallquist, E. S. Polzik, and P. Zoller, Phys. Rev. A 79, 063819 (2009), arXiv: 0904.1306.ADSCrossRefGoogle Scholar
- 28.S. Huang, and G. S. Agarwal, Phys. Rev. A 82, 033811 (2010), arXiv: 1007.1620.ADSCrossRefGoogle Scholar
- 29.G. S. Agarwal, and S. Huang, Phys. Rev. A 93, 043844 (2016), arXiv: 1602.02214.ADSCrossRefGoogle Scholar
- 30.X. Y. Lű, J. Q. Liao, L. Tian, and F. Nori, Phys. Rev. A 91, 013834 (2015), arXiv: 1403.0049.ADSCrossRefGoogle Scholar
- 31.A. Nunnenkamp, K. Børkje, J. G. E. Harris, and S. M. Girvin, Phys. Rev. A 82, 021806 (2010), arXiv: 1004.2510.ADSCrossRefGoogle Scholar
- 32.M. Asjad, G. S. Agarwal, M. S. Kim, P. Tombesi, G. D. Giuseppe, and D. Vitali, Phys. Rev. A 89, 023849 (2014), arXiv: 1309.5485.ADSCrossRefGoogle Scholar
- 33.A. Dalafi, M. H. Naderi, and A. Motazedifard, Phys. Rev. A 97, 043619 (2018), arXiv: 1802.10394.ADSCrossRefGoogle Scholar
- 34.C. S. Hu, Z. B. Yang, H. Wu, Y. Li, and S. B. Zheng, Phys. Rev. A 98, 023807 (2018), arXiv: 1803.05147.ADSCrossRefGoogle Scholar
- 35.W. Y. Huo, and G. L. Long, Appl. Phys. Lett. 92, 133102 (2008).ADSCrossRefGoogle Scholar
- 36.J. M. Pirkkalainen, E. Damskägg, M. Brandt, F. Massel, and M. A. Sillanpää, Phys. Rev. Lett. 115, 243601 (2015), arXiv: 1507.04209.ADSCrossRefGoogle Scholar
- 37.M. O. Scully, and M. S. Zubairy, Quantum Optics (Cambridge University Press, Cambridge, England, 2001).zbMATHGoogle Scholar
- 38.S. Chakraborty, and A. K. Sarma, Ann. Phys. 392, 39 (2018).ADSCrossRefGoogle Scholar
- 39.H. Wang, X. Gu, Y. Liu, A. Miranowicz, and F. Nori, Phys. Rev. A 92, 033806 (2015), arXiv: 1506.03858.ADSCrossRefGoogle Scholar
- 40.H. Wang, X. Gu, Y. Liu, A. Miranowicz, and F. Nori, Phys. Rev. A 90, 023817 (2014), arXiv: 1402.2764.ADSCrossRefGoogle Scholar
- 41.M. D. LaHaye, J. Suh, P. M. Echternach, K. C. Schwab, and M. L. Roukes, Nature 459, 960 (2009).ADSCrossRefGoogle Scholar
- 42.X. Wang, A. Miranowicz, H. R. Li, F. L. Li, and F. Nori, Phys. Rev. A 98, 023821 (2018), arXiv: 1803.06513.ADSCrossRefGoogle Scholar
- 43.D. Vitali, S. Gigan, A. Ferreira, H. R. B¨ohm, P. Tombesi, A. Guerreiro, V. Vedral, A. Zeilinger, and M. Aspelmeyer, Phys. Rev. Lett. 98, 030405 (2007).ADSCrossRefGoogle Scholar
- 44.X. Chen, Y. C. Liu, P. Peng, Y. Zhi, and Y. F. Xiao, Phys. Rev. A 92, 033841 (2015).ADSCrossRefGoogle Scholar
- 45.V. Giovannetti, and D. Vitali, Phys. Rev. A 63, 023812 (2001).ADSCrossRefGoogle Scholar
- 46.F. Yoshihara, T. Fuse, S. Ashhab, K. Kakuyanagi, S. Saito, and K. Semba, Nat. Phys. 13, 44 (2016), arXiv: 1602.00415.CrossRefGoogle Scholar
- 47.T. Li, and Z. Q. Yin, Sci. Bull. 61, 163 (2016).CrossRefGoogle Scholar
- 48.S. Etaki, M. Poot, I. Mahboob, K. Onomitsu, H. Yamaguchi, and H. S. J. van der Zant, Nat. Phys. 4, 785 (2008).CrossRefGoogle Scholar
- 49.M. Abdi, P. Degenfeld-Schonburg, M. Sameti, C. Navarrete-Benlloch, and M. J. Hartmann, Phys. Rev. Lett. 116, 233604 (2016), arXiv: 1602.07922.ADSCrossRefGoogle Scholar