Advertisement

Applying deep neural networks to the detection and space parameter estimation of compact binary coalescence with a network of gravitational wave detectors

  • XiLong Fan
  • Jin LiEmail author
  • Xin Li
  • YuanHong Zhong
  • JunWei Cao
Article

Abstract

In this paper, we study an application of deep learning to the advanced laser interferometer gravitational wave observatory (LIGO) and advanced Virgo coincident detection of gravitational waves (GWs) from compact binary star mergers. This deep learning method is an extension of the Deep Filtering method used by George and Huerta (2017) for multi-inputs of network detectors. Simulated coincident time series data sets in advanced LIGO and advanced Virgo detectors are analyzed for estimating source luminosity distance and sky location. As a classifier, our deep neural network (DNN) can effectively recognize the presence of GW signals when the optimal signal-to-noise ratio (SNR) of network detectors ≥ 9. As a predictor, it can also effectively estimate the corresponding source space parameters, including the luminosity distance D, right ascension α, and declination δ of the compact binary star mergers. When the SNR of the network detectors is greater than 8, their relative errors are all less than 23%. Our results demonstrate that Deep Filtering can process coincident GW time series inputs and perform effective classification and multiple space parameter estimation. Furthermore, we compare the results obtained from one, two, and three network detectors; these results reveal that a larger number of network detectors results in a better source location.

Keywords

deep neural networks advanced LIGO and advanced Virgo coincident detection of gravitational waves multiple space parameter estimation 

References

  1. 1.
    B. P. Abbott, et al. (LIGO Scientific Collaboration and Virgo Collaboration), Phys. Rev. Lett. 119, 161101 (2017), arXiv: 1710.05832.ADSCrossRefGoogle Scholar
  2. 2.
    B. P. Abbott, et al. (LIGO Scientific Collaboration and Virgo Collaboration), Phys. Rev. Lett. 119, 141101 (2017), arXiv: 1709.09660.ADSCrossRefGoogle Scholar
  3. 3.
    B. P. Abbott, et al. (LIGO Scientific Collaboration and Virgo Collaboration), Phys. Rev. Lett. 116, 061102 (2016), arXiv: 1602.03837.ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    B. P. Abbott, et al. (LIGO Scientific Collaboration and Virgo Collaboration), Phys. Rev. Lett. 116, 241103 (2016), arXiv: 1606.04855.ADSCrossRefGoogle Scholar
  5. 5.
    B. P. Abbott, et al. (LIGO Scientific Collaboration and Virgo Collaboration), Phys. Rev. Lett. 118, 221101 (2017), arXiv: 1706.01812.ADSCrossRefGoogle Scholar
  6. 6.
    J. Li, and X. L. Fan, Sci. China-Phys. Mech. Astron. 60, 120431 (2017).ADSCrossRefGoogle Scholar
  7. 7.
    B. P. Abbott, et al. (LIGO Scientific Collaboration and Virgo Collaboration), Class. Quantum Grav. 32, 074001 (2015), arXiv: 1411.4547.ADSCrossRefGoogle Scholar
  8. 8.
    F. Acernese, et al. (Virgo Collaboration), Class. Quantum Grav. 32, 024001 (2015), arXiv: 1408.3978.ADSCrossRefGoogle Scholar
  9. 9.
    D. Blair, L. Ju, C. N. Zhao, L. Q. Wen, Q. Chu, Q. Fang, R. G. Cai, J. R. Gao, X. C. Lin, D. Liu, L. A. Wu, Z. H. Zhu, D. H. Reitze, K. Arai, F. Zhang, R. Flaminio, X. J. Zhu, G. Hobbs, R. N. Manchester, R. M. Shannon, C. Baccigalupi, W. Gao, P. Xu, X. Bian, Z. J. Cao, Z. J. Chang, P. Dong, X. F. Gong, S. L. Huang, P. Ju, Z. R. Luo, L. E. Qiang, W. L. Tang, X. Y. Wan, Y. Wang, S. N. Xu, Y. L. Zang, H. P. Zhang, Y. K. Lau, and W. T. Ni, Sci. China-Phys. Mech. Astron. 58, 120402 (2015), arXiv: 1602.02872.CrossRefGoogle Scholar
  10. 10.
    D. Blair, L. Ju, C. N. Zhao, L. Q. Wen, H. X. Miao, R. G. Cai, J. R. Gao, X. C. Lin, D. Liu, L. A. Wu, Z. H. Zhu, G. Hammond, H. J. Paik, V. Fafone, A. Rocchi, C. Blair, Y. Q. Ma, J. Y. Qin, and M. Page, Sci. China-Phys. Mech. Astron. 58, 120405 (2015), arXiv: 1602.05087.CrossRefGoogle Scholar
  11. 11.
    R. Biswas, L. Blackburn, J. Cao, R. Essick, K. A. Hodge, E. Katsavounidis, K. Kim, Y. M. Kim, E. O. Le Bigot, C. H. Lee, J. J. Oh, S. H. Oh, E. J. Son, Y. Tao, R. Vaulin, and X. Wang, Phys. Rev. D 88, 062003 (2013), arXiv: 1303.6984.ADSCrossRefGoogle Scholar
  12. 12.
    D. George, and E. A. Huerta, Phys. Rev. D 97, 044039 (2018), arXiv: 1701.00008.ADSCrossRefGoogle Scholar
  13. 13.
    D. George and E. A. Huerta, Phys. Lett. B, 778 (2018), arXiv: 1711.03121.Google Scholar
  14. 14.
    A. Mytidis, A. A. Panagopoulos, O. P. Panagopoulos, and B. Whiting, 2015, arXiv: 1508.02064.Google Scholar
  15. 15.
    A. Torres-Forné, A. Marquina, J. A. Font, and J. M. Ibáñez, Phys. Rev. D 94, 124040 (2016), arXiv: 1612.01305.ADSCrossRefGoogle Scholar
  16. 16.
    K. A. Hodge, The Search for Gravitational Waves from the Coalescence of Black Hole Binary Systems in Data from the LIGO and Virgo Detectors Or: A Dark Walk through a Random Forest, Dissertation for the Doctoral Degree (California Institute of Technology, Pasadena, 2014).Google Scholar
  17. 17.
    P. T. Baker, S. Caudill, K. A. Hodge, D. Talukder, C. Capano, and N. J. Cornish, Phys. Rev. D 91, 062004 (2015), arXiv: 1412.6479.ADSCrossRefGoogle Scholar
  18. 18.
    T. Gebhard, N. Kilbertus, G. Parascandolo, I. Harry, and B. Schölkopf, in Workshop on Deep Learning for Physical Sciences (DLPS) at the 31st Conference on Neural Information Processing Systems (NIPS, Long Beach, 2017).Google Scholar
  19. 19.
    H. Gabbard, M. Williams, F. Hayes, and C. Messenger, Phys. Rev. Lett. 120, 141103 (2018), arXiv: 1712.06041.ADSCrossRefGoogle Scholar
  20. 20.
    X. R. Li, W. L. Yu, and X. L. Fan, 2017, arXiv: 1712.00356.Google Scholar
  21. 21.
    J. G. Carbonell, R. S. Michalski, and T. M. Mitchell, An overview of machine learning, in Machinelearning (Springer, Heidelberg, 1983), pp. 3–23.Google Scholar
  22. 22.
    W. S. McCulloch, and W. Pitts, Bull. Math. Biophys. 5, 115 (1943).MathSciNetCrossRefGoogle Scholar
  23. 23.
    G. A. Carpenter, Neural Networks, 2, 243 (1989).CrossRefGoogle Scholar
  24. 24.
    J. Schmidhuber, Neural Networks 61, 85 (2015).CrossRefGoogle Scholar
  25. 25.
    J. Wang, SIAM J. Sci. Comput. 18, 1479 (2006).CrossRefGoogle Scholar
  26. 26.
    K. Fukushima, Biol. Cybernet. 36, 193 (1980).CrossRefGoogle Scholar
  27. 27.
    Y. LeCun, and Y. B. Chap, Convolutional Networks for Images, Speech, and Time Series (MIT Press, Cambridge, 1998), pp. 255–258.Google Scholar
  28. 28.
    A. Krizhevsky, I. Sutskever, and G. E. Hinton, in Advances in Neural In f ormation Processing S ystems 25, edited by F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger (Curran Associates, Inc., Nice, 2012), pp. 1097–1105.Google Scholar
  29. 29.
    L. X. Li, and B. Paczynski, Astrophys. J. 507, L59 (1998).ADSCrossRefGoogle Scholar
  30. 30.
    B. D. Metzger, and E. Berger, Astrophys. J. 746, 48 (2012), arXiv: 1108.6056.ADSCrossRefGoogle Scholar
  31. 31.
    B. P. Abbott, et al. (LIGO Scientific Collaboration and Virgo Collaboration), Astrophys. J. 848, L12 (2017), arXiv: 1710.05833.ADSCrossRefGoogle Scholar
  32. 32.
    D. A. Coulter, GCN 21529, 1 (2017). 1105 Media, Inc. McLean, VA.Google Scholar
  33. 33.
    D. A. Coulter, R. J. Foley, C. D. Kilpatrick, M. R. Drout, A. L. Piro, B. J. Shappee, M. R. Siebert, J. D. Simon, N. Ulloa, D. Kasen, B. F. Madore, A. Murguia-Berthier, Y. C. Pan, J. X. Prochaska, E. Ramirez- Ruiz, A. Rest, and C. Rojas-Bravo, Science 358, 1556 (2017), arXiv: 1710.05452.ADSCrossRefGoogle Scholar
  34. 34.
    B. P. Abbott, et al. (LIGO Scientific Collaboration and Virgo Collaboration), GCN 21513, 1 (2017).Google Scholar
  35. 35.
    X. L. Fan, Sci. China-Phys. Mech. Astron. 59, 640001 (2016).CrossRefGoogle Scholar
  36. 36.
    C. Cutler, and E. Flanagan, Phys. Rev. D 49, 2658 (1994).ADSCrossRefGoogle Scholar
  37. 37.
    P. Jaranowski, A. Królak, and B. F. Schutz, Phys. Rev. D 58, 063001 (1998), arXiv: 9804014v1.ADSCrossRefGoogle Scholar
  38. 38.
    D. Shoemaker, Advanced LIGO anticipated sensitivity curves-LIGO Document (2010).Google Scholar
  39. 39.
    F. Acernese, M. Agathos, K. Agatsuma, D. Aisa, N. Allemandou, A. Allocca, J. Amarni, P. Astone, G. Balestri, G. Ballardin, F. Barone, J. P. Baronick, M. Barsuglia, A. Basti, F. Basti, T. S. Bauer, V. Bavigadda, M. Bejger, M. G. Beker, C. Belczynski, D. Bersanetti, A. Bertolini, M. Bitossi, M. A. Bizouard, S. Bloemen, M. Blom, M. Boer, G. Bogaert, D. Bondi, F. Bondu, L. Bonelli, R. Bonnand, V. Boschi, L. Bosi, T. Bouedo, C. Bradaschia, M. Branchesi, T. Briant, A. Brillet, V. Brisson, T. Bulik, H. J. Bulten, D. Buskulic, C. Buy, G. Cagnoli, E. Calloni, C. Campeggi, B. Canuel, F. Carbognani, F. Cavalier, R. Cavalieri, G. Cella, E. Cesarini, E. C. Mottin, A. Chincarini, A. Chiummo, S. Chua, F. Cleva, E. Coccia, P. F. Cohadon, A. Colla, M. Colombini, A. Conte, J. P. Coulon, E. Cuoco, A. Dalmaz, S. D’Antonio, V. Dattilo, M. Davier, R. Day, G. Debreczeni, J. Degallaix, S. Deléglise, W. D. Pozzo, H. Dereli, R. D. Rosa, L. D. Fiore, A. D. Lieto, A. D. Virgilio, M. Doets, V. Dolique, M. Drago, M. Ducrot, G. Endrőczi, V. Fafone, S. Farinon, I. Ferrante, F. Ferrini, F. Fidecaro, I. Fiori, R. Flaminio, J. D. Fournier, S. Franco, S. Frasca, F. Frasconi, L. Gammaitoni, F. Garufi, M. Gaspard, A. Gatto, G. Gemme, B. Gendre, E. Genin, A. Gennai, S. Ghosh, L. Giacobone, A. Giazotto, R. Gouaty, M. Granata, G. Greco, P. Groot, G. M. Guidi, J. Harms, A. Heidmann, H. Heitmann, P. Hello, G. Hemming, E. Hennes, D. Hofman, P. Jaranowski, R. J. G. Jonker, M. Kasprzack, F. Kéfélian, I. Kowalska, M. Kraan, A. Królak, A. Kutynia, C. Lazzaro, M. Leonardi, N. Leroy, N. Letendre, T. G. F. Li, B. Lieunard, M. Lorenzini, V. Loriette, G. Losurdo, C. Magazzú, E. Majorana, I. Maksimovic, V. Malvezzi, N. Man, V. Mangano, M. Mantovani, F. Marchesoni, F. Marion, J. Marque, F. Martelli, L. Martellini, A. Masserot, D. Meacher, J. Meidam, F. Mezzani, C. Michel, L. Milano, Y. Minenkov, A. Moggi, M. Mohan, M. Montani, N. Morgado, B. Mours, F. Mul, M. F. Nagy, I. Nardecchia, L. Naticchioni, G. Nelemans, I. Neri, M. Neri, F. Nocera, E. Pacaud, C. Palomba, F. Paoletti, A. Paoli, A. Pasqualetti, R. Passaquieti, D. Passuello, M. Perciballi, S. Petit, M. Pichot, F. Piergiovanni, G. Pillant, A. Piluso, L. Pinard, R. Poggiani, M. Prijatelj, G. A. Prodi, M. Punturo, P. Puppo, D. S. Rabeling, I. Rácz, P. Rapagnani, M. Razzano, V. Re, T. Regimbau, F. Ricci, F. Robinet, A. Rocchi, L. Rolland, R. Romano, D. Rosinska, P. Ruggi, E. Saracco, B. Sassolas, F. Schimmel, D. Sentenac, V. Sequino, S. Shah, K. Siellez, N. Straniero, B. Swinkels, M. Tacca, M. Tonelli, F. Travasso, M. Turconi, G. Vajente, N. van Bakel, M. van Beuzekom, J. F. J. van den Brand, C. Van Den Broeck, M. V. van der Sluys, J. van Heijningen, M. Vasúth, G. Vedovato, J. Veitch, D. Verkindt, F. Vetrano, A. Viceré, J. Y. Vinet, G. Visser, H. Vocca, R. Ward, M. Was, L. W. Wei, M. Yvert, A. Z. zny, and J. P. Zendri, Class. Quantum Grav. 32, 024001 (2015), arXiv: 1408.3978.ADSCrossRefGoogle Scholar
  40. 40.
    B. F. Schutz, Class. Quantum Grav. 28, 125023 (2011), arXiv: 1102.5421.ADSCrossRefGoogle Scholar
  41. 41.
    B. S. Sathyaprakash, and B. F. Schutz, Living Rev. Relativ. 12, 2 (2009), arXiv: 0903.0338.ADSCrossRefGoogle Scholar
  42. 42.
    B. P. Abbott, et al. (LIGO Scientific Collaboration and Virgo Collaboration), Phys. Rev. Lett. 116, 241102 (2016), arXiv: 1602.03840.ADSMathSciNetCrossRefGoogle Scholar
  43. 43.
    K. O’Shea, and R. Nash, arXiv: 1511.08458 (2015).Google Scholar
  44. 44.
    D. Mishkin, N. Sergievskiy, and J. Matas, Comput. Vision Image Underst. 161, 11 (2017).CrossRefGoogle Scholar
  45. 45.
    R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and P. Kuksa, J. Mach. Learn. Res. 12, 2493 (2011).Google Scholar
  46. 46.
    Y. Zheng, Q. Liu, E. Chen, Y. Ge, and J. L. Zhao, Time Series Classification Using Multi-Channels Deep Convolutional Neural Networks, Web-Age Information Management (Springer, Cham, 2014), pp. 298–310.Google Scholar
  47. 47.
    J. Snoek, H. Larochelle, and R. P. Adams, in Advances in Neural Information Processing Systems 25, edited by F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger (Curran Associates, Inc., New York, 2012), pp. 2951–2959.Google Scholar
  48. 48.
    L. X. Xie, and A. Yuille, arXiv: 1703.01513v1.Google Scholar
  49. 49.
    D. P. Kingma, and J. Ba, arXiv: 1412.6980.Google Scholar
  50. 50.
    D. E. Rumelhart, G. E. Hinton, and R. J. Williams, Cogn. Model. 5 1 (1988).Google Scholar
  51. 51.
    J. Li, J. Cheng, J. Shi, and F. Huang, Brief Introduction of Back Propagation (BP) Neural Network Algorithm and Its Improvement, Advances in Computer Science and Information Engineering (Springer, Berlin, 2012), pp. 553–558.Google Scholar
  52. 52.
    L. Wen, and Y. Chen, Phys. Rev. D 81, 082001 (2010), arXiv: 1003.2504.ADSCrossRefGoogle Scholar
  53. 53.
    Z. J. Cao, Sci. China-Phys. Mech. Astron. 59, 110431 (2016).CrossRefGoogle Scholar
  54. 54.
    H. Gao, Sci. China-Phys. Mech. Astron. 61, 059531 (2018).ADSCrossRefGoogle Scholar
  55. 55.
    T. P. Li, S. L. Xiong, S. N. Zhang, F. J. Lu, L. M. Song, X. L. Cao, Z. Chang, G. Chen, L. Chen, T. X. Chen, Y. Chen, Y. B. Chen, Y. P. Chen, W. Cui, W. W. Cui, J. K. Deng, Y. W. Dong, Y. Y. Du, M. X. Fu, G. H. Gao, H. Gao, M. Gao, M. Y. Ge, Y. D. Gu, J. Guan, C. C. Guo, D. W. Han, W. Hu, Y. Huang, J. Huo, S. M. Jia, L. H. Jiang, W. C. Jiang, J. Jin, Y. J. Jin, B. Li, C. K. Li, G. Li, M. S. Li, W. Li, X. Li, X. B. Li, X. F. Li, Y. G. Li, Z. J. Li, Z. W. Li, X. H. Liang, J. Y. Liao, C. Z. Liu, G. Q. Liu, H. W. Liu, S. Z. Liu, X. J. Liu, Y. Liu, Y. N. Liu, B. Lu, X. F. Lu, T. Luo, X. Ma, B. Meng, Y. Nang, J. Y. Nie, G. Ou, J. L. Qu, N. Sai, L. Sun, Y. Tan, L. Tao, W. H. Tao, Y. L. Tuo, G. F. Wang, H. Y. Wang, J. Wang, W. S. Wang, Y. S. Wang, X. Y. Wen, B. B. Wu, M. Wu, G. C. Xiao, H. Xu, Y. P. Xu, L. L. Yan, J. W. Yang, S. Yang, Y. J. Yang, A. M. Zhang, C. L. Zhang, C. M. Zhang, F. Zhang, H. M. Zhang, J. Zhang, Q. Zhang, S. Zhang, T. Zhang, W. Zhang, W. C. Zhang, W. Z. Zhang, Y. Zhang, Y. Zhang, Y. F. Zhang, Y. J. Zhang, Z. Zhang, Z. L. Zhang, H. S. Zhao, J. L. Zhao, X. F. Zhao, S. J. Zheng, Y. Zhu, Y. X. Zhu, and C. L. Zou, Sci. China-Phys. Mech. Astron. 61, 031011 (2018), arXiv: 1710.06065ADSCrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • XiLong Fan
    • 1
  • Jin Li
    • 2
    Email author
  • Xin Li
    • 2
  • YuanHong Zhong
    • 3
  • JunWei Cao
    • 4
  1. 1.Department of Physics and AstronomyHubei University of EducationWuhanChina
  2. 2.Department of PhysicsChongqing UniversityChongqingChina
  3. 3.College of CommunicationChongqing UniversityChongqingChina
  4. 4.Research Institute of Information TechnologyTsinghua UniversityBeijingChina

Personalised recommendations