Advertisement

Carrier behavior in the vicinity of pit defects in GaN characterized by ultraviolet light-assisted Kelvin probe force microscopy

  • CuiHong Kai
  • XiaoJuan SunEmail author
  • YuPing Jia
  • ZhiMing Shi
  • Ke Jiang
  • JianWei Ben
  • You Wu
  • Yong Wang
  • HeNan Liu
  • XiaoHang Li
  • DaBing Li
Article
  • 14 Downloads

Abstract

Surface potentials in the vicinity of V-pits (cone bottom) and U-pits (blunt bottom) on epitaxial GaN surface have been systematically studied using ultraviolet (UV) light-assisted Kelvin probe force microscopy (KPFM). The band structure models are established to understand variation of the surface potentials at the pits and planar surface with and without UV light. The photo-generated carrier behavior at the pit defects is studied. According to the surface potential results, it can be deduced that the carrier distributions around the V- and U-pits are uneven. In dark, the electron concentration at the bottom of V-pit (30n0) and Upit (15n0) are higher than that at planar surface (n0). Under UV light, for V-pit, the electron concentration at the cone bottom (4.93×1011n0) is lower than that at the surrounding planar surface (5.68×1013n0). For U-pit, the electron concentration at the blunt bottom is 1.35×1012n0, which is lower than that at the surrounding planar surface (6.13×1013n0). The non-equilibrium electron concentrations at different locations are calculated. Based on the non-equilibrium electron concentration, it can be concluded that the carrier recombination rate at pit defects is higher than that at planar surface.

Keywords

pit defects surface potential electron concentration 

References

  1. 1.
    D. Li, K. Jiang, X. Sun, and C. Guo, Adv. Opt. Photon. 10, 43 (2018).CrossRefGoogle Scholar
  2. 2.
    S. H. Lim, Y. H. Ko, C. Rodriguez, S. H. Gong, and Y. H. Cho, Light Sci. Appl. 5, e16030 (2016).CrossRefGoogle Scholar
  3. 3.
    E. Matioli, S. Brinkley, K. M. Kelchner, Y. L. Hu, S. Nakamura, S. DenBaars, J. Speck, and C. Weisbuch, Light Sci. Appl. 1, e22 (2012).CrossRefGoogle Scholar
  4. 4.
    L. X. Zhao, S. C. Zhu, C. H. Wu, C. Yang, Z. G. Yu, H. Yang, and L. Liu, Sci. China-Phys. Mech. Astron. 59, 107301 (2016).CrossRefGoogle Scholar
  5. 5.
    Y. Huang, P. X. Li, Z. Yang, Y. Hao, and X. B. Wang, Sci. China-Phys. Mech. Astron. 57, 887 (2014).ADSCrossRefGoogle Scholar
  6. 6.
    H. Takahashi, A. Ito, T. Tanaka, A. Watanabe, H. Ota, and K. Chikuma, Jpn. J. Appl. Phys. 39, L569 (2000).ADSCrossRefGoogle Scholar
  7. 7.
    I. A. Ajia, P. R. Edwards, Y. Pak, E. Belekov, M. A. Roldan, N. Wei, Z. Liu, R. W. Martin, and I. S. Roqan, ACS Photon. 5, 820 (2018).CrossRefGoogle Scholar
  8. 8.
    J. Kim, J. Kim, Y. Tak, S. Chae, J. Y. Kim, and Y. Park, IEEE Electron. Device Lett. 34, 1409 (2013).ADSCrossRefGoogle Scholar
  9. 9.
    A. Hangleiter, F. Hitzel, C. Netzel, D. Fuhrmann, U. Rossow, G. Ade, and P. Hinze, Phys. Rev. Lett. 95, 127402 (2005).ADSCrossRefGoogle Scholar
  10. 10.
    M. K. Kim, S. Choi, J. H. Lee, C. H. Park, T. H. Chung, J. H. Baek, and Y. H. Cho, Sci. Rep. 7, 42221 (2017).ADSCrossRefGoogle Scholar
  11. 11.
    D. Han, S. Ma, Z. Jia, W. Jia, P. Liu, H. Dong, L. Shang, A. Zhang, G. Zhai, X. Li, X. Liu, and B. Xu, J. Phys. D-Appl. Phys. 50, 475103 (2017).ADSCrossRefGoogle Scholar
  12. 12.
    K. Sugimoto, N. Okada, S. Kurai, Y. Yamada, and K. Tadatomo, Jpn. J. Appl. Phys. 57, 062101 (2018).ADSCrossRefGoogle Scholar
  13. 13.
    S. W. Chen, H. Li, C. J. Chang, and T. C. Lu, Materials 10, 113 (2017).ADSCrossRefGoogle Scholar
  14. 14.
    X. Li, G. Le Gac, S. Bouchoule, Y. El Gmili, G. Patriarche, S. Sundaram, P. Disseix, F. Réveret, J. Leymarie, J. Streque, F. Genty, J. P. Salvestrini, R. D. Dupuis, X. H. Li, P. L. Voss, and A. Ougazzaden, J. Cryst. Growth 432, 37 (2015).ADSCrossRefGoogle Scholar
  15. 15.
    J. Jeschke, M. Martens, A. Knauer, V. Kueller, U. Zeimer, C. Netzel, C. Kuhn, F. Krueger, C. Reich, T. Wernicke, M. Kneissl, and M. Weyers, IEEE Photon. Technol. Lett. 27, 1969 (2015).ADSCrossRefGoogle Scholar
  16. 16.
    M. Zhang, D. Cai, Y. Zhang, X. Su, T. Zhou, M. Cui, C. Li, J. Wang, and K. Xu, Mater. Lett. 198, 12 (2017).CrossRefGoogle Scholar
  17. 17.
    T. Paskova, E. M. Goldys, and B. Monemar, J. Cryst. Growth 203, 1 (1999).ADSCrossRefGoogle Scholar
  18. 18.
    A. Lochthofen, W. Mertin, G. Bacher, L. Hoeppel, S. Bader, J. Off, and B. Hahn, Appl. Phys. Lett. 93, 022107 (2008).ADSCrossRefGoogle Scholar
  19. 19.
    W. Lee, H. J. Lee, S. H. Park, K. Watanabe, K. Kumagai, T. Yao, J. H. Chang, and T. Sekiguchi, J. Cryst. Growth 351, 83 (2012).ADSCrossRefGoogle Scholar
  20. 20.
    E. Richter, U. Zeimer, F. Brunner, S. Hagedorn, M. Weyers, and G. Tränkle, Phys. Status Solidi C 7, 28 (2010).ADSCrossRefGoogle Scholar
  21. 21.
    D. B. Li, X. J. Sun, Y. P. Jia, M. I. Stockman, H. P. Paudel, H. Song, H. Jiang, and Z. M. Li, Light Sci. Appl. 6, e17038 (2017).CrossRefGoogle Scholar
  22. 22.
    K. Watanabe, J. R. Yang, S. Y. Huang, K. Inoke, J. T. Hsu, R. C. Tu, T. Yamazaki, N. Nakanishi, and M. Shiojiri, Appl. Phys. Lett. 82, 718 (2003).ADSCrossRefGoogle Scholar
  23. 23.
    K. S. Son, D. G. Kim, H. K. Cho, K. Lee, S. Kim, and K. Park, J. Cryst. Growth 261, 50 (2004).ADSCrossRefGoogle Scholar
  24. 24.
    L. Chernyak, A. Osinsky, G. Nootz, A. Schulte, J. Jasinski, M. Benamara, Z. Liliental-Weber, D. C. Look, and R. J. Molnar, Appl. Phys. Lett. 77, 2695 (2000).ADSCrossRefGoogle Scholar
  25. 25.
    A. Cavallini, L. Polenta, and A. Castaldini, Microelectron. Reliab. 50, 1398 (2010).CrossRefGoogle Scholar
  26. 26.
    Z. Liu, K. Xu, Y. Fan, G. Xu, Z. Huang, H. Zhong, J. Wang, and H. Yang, Appl. Phys. Lett. 101, 252107 (2012).ADSCrossRefGoogle Scholar
  27. 27.
    N. A. Fichtenbaum, T. E. Mates, S. Keller, S. P. DenBaars, and U. K. Mishra, J. Cryst. Growth 310, 1124 (2008).ADSCrossRefGoogle Scholar
  28. 28.
    D. Meister, M. Böhm, M. Topf, W. Kriegseis, W. Burkhardt, I. Dirnstorfer, S. Rösel, B. Farangis, B. K. Meyer, A. Hoffmann, H. Siegle, C. Thomsen, J. Christen, and F. Bertram, J. Appl. Phys. 88, 1811 (2000).ADSCrossRefGoogle Scholar
  29. 29.
    P. Waltereit, O. Brandt, A. Trampert, H. T. Grahn, J. Menniger, M. Ramsteiner, M. Reiche, and K. H. Ploog, Nature 406, 865 (2000).ADSCrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • CuiHong Kai
    • 1
    • 2
  • XiaoJuan Sun
    • 1
  • YuPing Jia
    • 1
  • ZhiMing Shi
    • 1
  • Ke Jiang
    • 1
    • 2
  • JianWei Ben
    • 1
    • 2
  • You Wu
    • 1
    • 2
  • Yong Wang
    • 1
    • 2
  • HeNan Liu
    • 1
  • XiaoHang Li
    • 3
  • DaBing Li
    • 1
  1. 1.State Key Laboratory of Luminescence and ApplicationsChangchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of SciencesChangchunChina
  2. 2.Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijingChina
  3. 3.King Abdullah University of Science and Technology (KAUST), Advanced Semiconductor LaboratoryThuwalSaudi Arabia

Personalised recommendations