Advertisement

Deformation and failure processes of kaolinite under tension: Insights from molecular dynamics simulations

  • Hua Yang
  • ManChao HeEmail author
  • ChunSheng Lu
  • WeiLi Gong
Article
  • 19 Downloads

Abstract

As a primary constituent of soft rocks, kaolinite plays an important role in large deformations of underground structures, which usually leads to serious safety risks. This paper investigates the deformation and failure processes of kaolinite under tension using molecular dynamics simulations. Based on the atomistic scale of these deformation and failure processes and their stressstrain curves, Young’s moduli and strengths in three crystal directions and the surface energy of the (001) plane were obtained, which were consistent with theoretical predictions. The number of broken bonds and their corresponding broken sequences were determined. The results of our study indicated that as more bonds break during tension, the initiation of crack led to a sharp decrease in stress. We also explored the influence of temperature on the mechanical properties of kaolinite, which indicated that as temperature increased, the tensile strength and Young’s modulus decreased.

Keywords

kaolinite micromechanics deformation fracture molecular dynamics 

References

  1. 1.
    D. C. Peckley, and T. Uchimura, Soils Found. 49, 51 (2009).CrossRefGoogle Scholar
  2. 2.
    L. Wan, X. Peng, Z. Wei, and C. Yang, Disaster Adv. 3, 499 (2010).Google Scholar
  3. 3.
    P. Cao, Y. D. Wen, H. P. Wang, H. P. Yuan, and B. X. Yuan, Environ. Earth Sci. 75, 900 (2016).CrossRefGoogle Scholar
  4. 4.
    W. Feng, R. Huang, and T. Li, Tunnell. Undergr. Space Tech. 32, 190 (2012).CrossRefGoogle Scholar
  5. 5.
    M. O. Ciantia, R. Castellanza, and C. di Prisco, Rock Mech. Rock Eng. 48, 441 (2015).ADSCrossRefGoogle Scholar
  6. 6.
    T. Vanorio, M. Prasad, and A. Nur, Geophys. J. Int. 155, 319 (2003).ADSCrossRefGoogle Scholar
  7. 7.
    J. A. Ortega, F. J. Ulm, and Y. Abousleiman, Acta Geotech. 2, 155 (2007).CrossRefGoogle Scholar
  8. 8.
    Y. Zhao, Q. Xue, H. J. Lu, and L. Lin, Environ. Eng. Manag. J. 12, 1903 (2013).CrossRefGoogle Scholar
  9. 9.
    O. Mashtalir, M. Naguib, V. N. Mochalin, Y. Dall’Agnese, M. Heon, M. W. Barsoum, and Y. Gogotsi, Nat. Commun. 4, 216 (2013).CrossRefGoogle Scholar
  10. 10.
    D. Ebrahimi, A. J. Whittle, and R. J. M. Pellenq, Clays Clay Miner. 64, 425 (2016).ADSCrossRefGoogle Scholar
  11. 11.
    A. Mikowski, P. Soares, F. Wypych, J. E. F. C. Gardolinski, and C. Lepienski, Philos. Mag. 87, 4445 (2007).ADSCrossRefGoogle Scholar
  12. 12.
    H. Sato, K. Ono, and T. Yamagishi, Am. Miner. 90, 1824 (2005).ADSCrossRefGoogle Scholar
  13. 13.
    Z. P. Xu, and Q. S. Zheng, Sci. China-Phys. Mech. Astron. 61, 074601 (2018).ADSCrossRefGoogle Scholar
  14. 14.
    D. Frenkel, and B. Smit, Understanding Molecular Simulation: From Algorithms to Applications (Academic Press, New York, 2002).zbMATHGoogle Scholar
  15. 15.
    Q. Liu, S. Zhang, H. Cheng, D. Wang, X. Li, X. Hou, and R. L. Frost, J. Therm. Anal. Calorim. 117, 189 (2014).CrossRefGoogle Scholar
  16. 16.
    S. A. Zielke, A. K. Bertram, and G. N. Patey, J. Phys. Chem. B 120, 1726 (2015).CrossRefGoogle Scholar
  17. 17.
    J. Zhou, X. Lu, and E. S. Boek, Clays Clay Miner 64, 503 (2016).ADSCrossRefGoogle Scholar
  18. 18.
    X. Li, H. Li, and G. Yang, Sci. Rep. 5, 14377 (2015).ADSCrossRefGoogle Scholar
  19. 19.
    J. A. Greathouse, D. Geatches, D. Q. Pike, H. C. Greenwell, C. T. Johnston, J. Wilcox, and R. T. Cygan, Clays Clay Miner. 63, 185 (2015).ADSCrossRefGoogle Scholar
  20. 20.
    H. Cheng, S. Zhang, Q. Liu, X. Li, and R. L. Frost, Appl. Clay Sci. 116-117, 273 (2015).CrossRefGoogle Scholar
  21. 21.
    S. Zhang, Q. Liu, F. Gao, X. Li, C. Liu, H. Li, S. A. Boyd, C. T. Johnston, and B. J. Teppen, J. Phys. Chem. C 121, 402 (2017).CrossRefGoogle Scholar
  22. 22.
    M. A. Mazo, L. I. Manevitch, E. B. Gusarova, M. Y. Shamaev, A. A. Berlin, N. K. Balabaev, and G. C. Rutledge, J. Phys. Chem. B 112, 2964 (2008).CrossRefGoogle Scholar
  23. 23.
    G. D. Zartman, H. Liu, B. Akdim, R. Pachter, and H. Heinz, J. Phys. Chem. C 114, 1763 (2010).CrossRefGoogle Scholar
  24. 24.
    G. Hantal, L. Brochard, H. Laubie, D. Ebrahimi, R. J. M. Pellenq, F. J. Ulm, and B. Coasne, Mol. Phys. 112, 1294 (2014).ADSCrossRefGoogle Scholar
  25. 25.
    S. L. Teich-McGoldrick, J. A. Greathouse, and R. T. Cygan, J. Phys. Chem. C 116, 15099 (2012).CrossRefGoogle Scholar
  26. 26.
    B. K. Benazzouz, and A. Zaoui, Mater. Chem. Phys. 132, 880 (2012).CrossRefGoogle Scholar
  27. 27.
    D. L. Bish, Clays Clay Miner. 41, 738 (1993).ADSCrossRefGoogle Scholar
  28. 28.
    Accelrys Materials Studio, Version 7.0 (Accelrys Software Inc., San Diego (CA), 2008).Google Scholar
  29. 29.
    S. Plimpton, J. Comput. Phys. 117, 1 (1995).ADSCrossRefGoogle Scholar
  30. 30.
    R. T. Cygan, J. J. Liang, and A. G. Kalinichev, J. Phys. Chem. B 108, 1255 (2004).CrossRefGoogle Scholar
  31. 31.
    J. P. Larentzos, J. A. Greathouse, and R. T. Cygan, J. Phys. Chem. C 111, 12752 (2007).CrossRefGoogle Scholar
  32. 32.
    B. Chen, J. R. G. Evans, H. C. Greenwell, P. Boulet, P. V. Coveney, A. A. Bowden, and A. Whiting, Chem. Soc. Rev. 37, 568 (2008).CrossRefGoogle Scholar
  33. 33.
    T. A. Ho, D. V. Papavassiliou, L. L. Lee, and A. Striolo, Proc. Natl. Acad. Sci. 108, 16170 (2011).ADSCrossRefGoogle Scholar
  34. 34.
    S. Kerisit, M. Okumura, K. M. Rosso, and M. Machida, Clays Clay Miner 64, 389 (2016).ADSCrossRefGoogle Scholar
  35. 35.
    L. Benco, D. Tunega, J. Hafner, and H. Lischka, J. Phys. Chem. B 105, 10812 (2001).CrossRefGoogle Scholar
  36. 36.
    M. P. Allen, and D. J. Tildesley, Computer Simulation of Liquids (Oxford University Press, Oxford, 1987), p.120.zbMATHGoogle Scholar
  37. 37.
    W. G. Hoover, Phys. Rev. A 31, 1695 (1985).ADSCrossRefGoogle Scholar
  38. 38.
    B. K. Benazzouz, and A. Zaoui, Appl. Clay Sci. 58, 44 (2012).CrossRefGoogle Scholar
  39. 39.
    M. F. Ashby, Materials Selection in Mechanical Design (Butterworth-Heinemann, Oxford, 2005), p. 257.Google Scholar
  40. 40.
    V. V. Murashov, and E. Demchuk, J. Phys. Chem. B 109, 10835 (2005).CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Hua Yang
    • 1
  • ManChao He
    • 1
    Email author
  • ChunSheng Lu
    • 2
  • WeiLi Gong
    • 1
  1. 1.State Key Laboratory for Geomechanics and Deep Underground EngineeringChina University of Mining and TechnologyBeijingChina
  2. 2.Department of Mechanical EngineeringCurtin UniversityPerthAustralia

Personalised recommendations