Advertisement

Holographic heat engine in Horndeski model with the k-essence sector

  • ShiQian Hu
  • XiaoMei KuangEmail author
Article
  • 5 Downloads

Abstract

This study aims to analyze the extended thermodynamical properties of the charged black hole in Horndeski theory with the k-essence sector. Herein, we define a holographic heat engine using the anti de Sitter black hole. We then estimate the engine efficiency in high-temperature limit and compare the result with the exact result. With the given specified parameters in a rectangular engine, high order coupling suppresses the engine efficiency.

Keywords

anti de Sitter black hole thermodynamics of black hole holographic heat engine 

References

  1. 1.
    J. Maldacena, Int. J. Theor. Phys. 38, 1113 (1999); Adv. Theor. Math. Phys. 2, 231 (1998).CrossRefGoogle Scholar
  2. 2.
    S. S. Gubser, I. R. Klebanov, and A. M. Polyakov, Phys. Lett. B 428, 105 (1998).ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    E. Witten, Adv. Theor. Math. Phys. 2, 253 (1998).ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    D. Kastor, S. Ray, and J. Traschen, Class. Quantum Grav. 26, 195011 (2009), arXiv: 0904.2765.ADSCrossRefGoogle Scholar
  5. 5.
    B. P. Dolan, Class. Quantum Grav. 28, 125020 (2011), arXiv: 1008.5023.ADSCrossRefGoogle Scholar
  6. 6.
    M. Cvetič, G. W. Gibbons, D. Kubizňák, and C. N. Pope, Phys. Rev. D 84, 024037 (2011), arXiv: 1012.2888.ADSCrossRefGoogle Scholar
  7. 7.
    B. P. Dolan, Class. Quantum Grav. 28, 235017 (2011), arXiv: 1106.6260.ADSCrossRefGoogle Scholar
  8. 8.
    N. Altamirano, D. Kubizňák, R. Mann, and Z. Sherkatghanad, Galaxies 2, 89 (2014), arXiv: 1401.2586.ADSCrossRefGoogle Scholar
  9. 9.
    R. A. Hennigar, R. B. Mann, and D. Kubizňák, Phys. Rev. Lett. 115, 031101 (2015).ADSCrossRefGoogle Scholar
  10. 10.
    D. Kubizňák, R. B. Mann, and M. Teo, Class. Quantum Grav. 34, 063001 (2017), arXiv: 1608.06147.ADSCrossRefGoogle Scholar
  11. 11.
    C. V. Johnson, Class. Quantum Grav. 31, 205002 (2014), arXiv: 1404.5982.ADSCrossRefGoogle Scholar
  12. 12.
    C. V. Johnson, Class. Quantum Grav. 33, 215009 (2016), arXiv: 1511.08782.ADSCrossRefGoogle Scholar
  13. 13.
    C. V. Johnson, Class. Quantum Grav. 33, 135001 (2016), arXiv: 1512.01746.ADSCrossRefGoogle Scholar
  14. 14.
    R. A. Hennigar, F. McCarthy, A. Ballon, and R. B. Mann, Class. Quantum Grav. 34, 175005 (2017), arXiv: 1704.02314.ADSCrossRefGoogle Scholar
  15. 15.
    C. V. Johnson, Class. Quantum Grav. 35, 045001 (2018), arXiv: 1705.04855.ADSCrossRefGoogle Scholar
  16. 16.
    J. X. Mo, F. Liang, and G. Q. Li, J. High Energ. Phys. 2017(3), 10 (2017), arXiv: 1701.00883.CrossRefGoogle Scholar
  17. 17.
    E. Caceres, P. H. Nguyen, and J. F. Pedraza, J. High Energ. Phys. 2015(9), 184 (2015), arXiv: 1507.06069.CrossRefGoogle Scholar
  18. 18.
    H. Xu, Y. Sun, and L. Zhao, Int. J. Mod. Phys. D 26, 1750151 (2017).ADSCrossRefGoogle Scholar
  19. 19.
    H. Liu, and X. H. Meng, Eur. Phys. J. C 77, 556 (2017), arXiv: 1704.04363.ADSCrossRefGoogle Scholar
  20. 20.
    S. W. Wei, and Y. X. Liu, arXiv: 1605.04629.Google Scholar
  21. 21.
    J. X. Mo, and S. Q. Lan, Eur. Phys. J. C 78, 666 (2018), arXiv: 1803.02491.ADSCrossRefGoogle Scholar
  22. 22.
    J. Zhang, Y. Li, and H. Yu, Eur. Phys. J. C 78, 645 (2018), arXiv: 1801.06811.ADSCrossRefGoogle Scholar
  23. 23.
    B. E. Panah, arXiv: 1805.03014.Google Scholar
  24. 24.
    C. V. Johnson, and F. Rosso, arXiv: 1806.05170.Google Scholar
  25. 25.
    R. A. Davison, Phys. Rev. D 88, 086003 (2013), arXiv: 1306.5792.ADSCrossRefGoogle Scholar
  26. 26.
    J. X. Mo, and G. Q. Li, J. High Energ. Phys. 2018(5), 122 (2018), arXiv: 1707.01235.CrossRefGoogle Scholar
  27. 27.
    S. H. Hendi, B. E. Panah, S. Panahiyan, H. Liu, and X. H. Meng, Phys. Lett. B 781, 40 (2018), arXiv: 1707.02231.ADSCrossRefGoogle Scholar
  28. 28.
    L. Q. Fang, and X. M. Kuang, Sci. China-Phys. Mech. Astron. 61, 080421 (2018), arXiv: 1710.09054.ADSCrossRefGoogle Scholar
  29. 29.
    T. Andrade, and B. Withers, J. High Energ. Phys. 2014(5), 101 (2014), arXiv: 1311.5157.CrossRefGoogle Scholar
  30. 30.
    M. Baggioli, and O. Pujolás, Phys. Rev. Lett. 114, 251602 (2015).ADSCrossRefGoogle Scholar
  31. 31.
    A. Cisterna, M. Hassaine, J. Oliva, and M. Rinaldi, Phys. Rev. D 96, 124033 (2017), arXiv: 1708.07194.ADSCrossRefGoogle Scholar
  32. 32.
    L. Heisenberg, arXiv: 1807.01725.Google Scholar
  33. 33.
    L. Alberte, M. Baggioli, A. Khmelnitsky, and O. Pujolás, J. High Energ. Phys. 2016(2), 114 (2016), arXiv: 1510.09089.CrossRefGoogle Scholar
  34. 34.
    L. Alberte, M. Ammon, M. Baggioli, A. Jiménez, and O. Pujolás, J. High Energ. Phys. 2018(1), 129 (2018), arXiv: 1708.08477.CrossRefGoogle Scholar
  35. 35.
    Y. Bardoux, M. M. Caldarelli, and C. Charmousis, J. High Energ. Phys. 2012(5), 54 (2012), arXiv: 1202.4458.CrossRefGoogle Scholar
  36. 36.
    R. C. Myers, and J. Z. Simon, Phys. Rev. D 38, 2434 (1988)ADSMathSciNetCrossRefGoogle Scholar
  37. 36a.
    L. F. Abbott, and S. Deser, Nucl. Phys. B 195, 76 (1982).ADSCrossRefGoogle Scholar
  38. 37.
    M. M. Caldarelli, G. Cognola, and D. Klemm, Class. Quantum Grav. 17, 399 (2000).ADSCrossRefGoogle Scholar
  39. 38.
    M. Cvetic, and S. S. Gubser, J. High Energy Phys. 1999(04), 024 (1999).CrossRefGoogle Scholar
  40. 39.
    A. Chamblin, R. Emparan, C. V. Johnson, and R. C. Myers, Phys. Rev. D 60, 064018 (1999).ADSMathSciNetCrossRefGoogle Scholar
  41. 40.
    A. Chamblin, R. Emparan, C. V. Johnson, and R. C. Myers, Phys. Rev. D 60, 104026 (1999).ADSMathSciNetCrossRefGoogle Scholar
  42. 41.
    D. Kubizňák, and R. B. Mann, J. High Energ. Phys. 2012(7), 33 (2012), arXiv: 1205.0559.ADSCrossRefGoogle Scholar
  43. 42.
    C. Johnson, Entropy 18, 120 (2016), arXiv: 1602.02838.ADSCrossRefGoogle Scholar
  44. 43.
    X. M. Kuang, and J. P. Wu, Phys. Lett. B 770, 117 (2017).ADSCrossRefGoogle Scholar
  45. 44.
    A. Cisterna, C. Erices, X. M. Kuang, and M. Rinaldi, Phys. Rev. D 97, 124052 (2018), arXiv: 1803.07600.ADSCrossRefGoogle Scholar
  46. 45.
    X. M. Kuang, J. P. Wu, and Z. Zhou, arXiv: 1805.07904.Google Scholar
  47. 46.
    A. Cisterna, and J. Oliva, Class. Quantum Grav. 35, 035012 (2018), arXiv: 1708.02916.ADSCrossRefGoogle Scholar
  48. 47.
    A. Chakraborty and C. V. Johnson, arXiv: 1612.09272.Google Scholar
  49. 48.
    F. Rosso, arXiv: 1801.07425.Google Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Center for Gravitation and Cosmology, College of Physical Science and TechnologyYangzhou UniversityYangzhouChina

Personalised recommendations