Advertisement

Implications on cosmic ray injection and propagation parameters from Voyager/ACE/AMS-02 nucleus data

  • Qiang Yuan
Article
  • 6 Downloads

Abstract

We study the propagation and injection models of cosmic rays using the latest measurements of the boron-to-carbon ratio and fluxes of protons, helium, carbon, and oxygen nuclei by the Alpha Magnetic Spectrometer and the Advanced Composition Ex- plorer at top of the Earth, and the Voyager spacecraft outside the heliosphere. The Advanced Composition Explorer (ACE) data during the same time interval of the AMS-02 data are extracted to minimize the complexity of the solar modulation effect. We find that the cosmic ray nucleus data favor a modified version of the diffusion-reacceleration scenario of the propagation. The diffusion coefficient is, however, required to increase moderately with decreasing rigidity at low energies, which has interesting implications on the particle and plasma interaction in the Milky Way. We further find that the low rigidity (< a few GV) injection spectra are different for different compositions. The injection spectra are softer for lighter nuclei. These results are expected to be helpful in understanding the acceleration process of cosmic rays.

Keywords

cosmic rays propagation origin and acceleration data analysis 

References

  1. 1.
    S. P. Swordy, D. Mueller, P. Meyer, J. LHeureux, and J. M. Grunsfeld, Astrophys. J. 349, 625 (1990).ADSCrossRefGoogle Scholar
  2. 2.
    D. Mueller, S. P. Swordy, P. Meyer, J. LHeureux, and J. M. Grunsfeld, Astrophys. J. 374, 356 (1991).ADSCrossRefGoogle Scholar
  3. 3.
    D. Maurin, F. Donato, R. Taillet, and P. Salati, Astrophys. J. 555, 585 (2001).ADSCrossRefGoogle Scholar
  4. 4.
    R. Trotta, G. Jóhannesson, I. V. Moskalenko, T. A. Porter, R. R. de Austri, and A. W. Strong, Astrophys. J. 729, 106 (2011), arXiv: 1011.0037.ADSCrossRefGoogle Scholar
  5. 5.
    H. B. Jin, Y. L. Wu, and Y. F. Zhou, J. Cosmol. Astropart. Phys. 2015, 049 (2015), arXiv: 1410.0171.CrossRefGoogle Scholar
  6. 6.
    G. Jóhannesson, R. R. Austri, A. C. Vincent, I. V. Moskalenko, E. Orlando, T. A. Porter, A. W. Strong, R. Trotta, F. Feroz, P. Graff, and M. P. Hobson, Astrophys. J. 824, 16 (2016), arXiv: 1602.02243.ADSCrossRefGoogle Scholar
  7. 7.
    J. Feng, N. Tomassetti, and A. Oliva, Phys. Rev. D 94, 123007 (2016), arXiv: 1610.06182.ADSCrossRefGoogle Scholar
  8. 8.
    M. Korsmeier, and A. Cuoco, Phys. Rev. D 94, 123019 (2016), arXiv: 1607.06093.ADSCrossRefGoogle Scholar
  9. 9.
    M. Aguilar, et al. (AMS collaboration), Phys. Rev. Lett. 117, 231102 (2016).ADSCrossRefGoogle Scholar
  10. 10.
    Q. Yuan, S. J. Lin, K. Fang, and X. J. Bi, Phys. Rev. D 95, 083007 (2017), arXiv: 1701.06149.ADSCrossRefGoogle Scholar
  11. 11.
    J. S. Niu, and T. Li, Phys. Rev. D 97, 023015 (2018), arXiv: 1705.11089.ADSCrossRefGoogle Scholar
  12. 12.
    A. Reinert, and M. W. Winkler, J. Cosmol. Astropart. Phys. 2018, 055 (2018), arXiv: 1712.00002.CrossRefGoogle Scholar
  13. 13.
    M. Aguilar, et al. (AMS collaboration), Phys. Rev. Lett. 119, 251101 (2017).ADSCrossRefGoogle Scholar
  14. 14.
    M. Aguilar, et al. (AMS collaboration), Phys. Rev. Lett. 120, 021101 (2018).ADSCrossRefGoogle Scholar
  15. 15.
    P. Blasi, E. Amato, and P. D. Serpico, Phys. Rev. Lett. 109, 061101 (2012), arXiv: 1207.3706.ADSCrossRefGoogle Scholar
  16. 16.
    N. Tomassetti, Astrophys. J. 752, L13 (2012), arXiv: 1204.4492.ADSCrossRefGoogle Scholar
  17. 17.
    Y. Q. Guo, Z. Tian, and C. Jin, Astrophys. J. 819, 54 (2016), arXiv: 1509.08227.ADSCrossRefGoogle Scholar
  18. 18.
    Y. Génolini, P. D. Serpico, M. Boudaud, S. Caroff, V. Poulin, L. Derome, J. Lavalle, D. Maurin, V. Poireau, S. Rosier, P. Salati, and M. Vecchi, Phys. Rev. Lett. 119, 241101 (2017), arXiv: 1706.09812.ADSCrossRefGoogle Scholar
  19. 19.
    Y. Q. Guo, and Q. Yuan, Phys. Rev. D 97, 063008 (2018), arXiv: 1801.05904.ADSCrossRefGoogle Scholar
  20. 20.
    W. Liu, Y.-H. Yao, and Y.-Q. Guo, arXiv: 1802.03602.Google Scholar
  21. 21.
    E. C. Stone, A. C. Cummings, F. B. McDonald, B. C. Heikkila, N. Lal, and W. R. Webber, Science 341, 150 (2013).ADSCrossRefGoogle Scholar
  22. 22.
    A. C. Cummings, E. C. Stone, B. C. Heikkila, N. Lal, W. R. Webber, G. Jóhannesson, I. V. Moskalenko, E. Orlando, and T. A. Porter, Astrophys. J. 831, 18 (2016).ADSCrossRefGoogle Scholar
  23. 23.
    J. Liu, Q. Yuan, X. Bi, H. Li, and X. Zhang, Phys. Rev. D 81, 023516 (2010), arXiv: 0906.3858.ADSCrossRefGoogle Scholar
  24. 24.
    J. Liu, Q. Yuan, X. J. Bi, H. Li, and X. Zhang, Phys. Rev. D 85, 043507 (2012), arXiv: 1106.3882.ADSCrossRefGoogle Scholar
  25. 25.
    A. W. Strong, and I. V. Moskalenko, Astrophys. J. 509, 212 (1998).ADSCrossRefGoogle Scholar
  26. 26.
    I. V. Moskalenko, and A. W. Strong, Astrophys. J. 493, 694 (1998).ADSCrossRefGoogle Scholar
  27. 27.
    A. Lewis, and S. Bridle, Phys. Rev. D 66, 103511 (2002).ADSCrossRefGoogle Scholar
  28. 28.
    A. W. Strong, I. V. Moskalenko, and V. S. Ptuskin, Annu. Rev. Nucl. Part. Sci. 57, 285 (2007).ADSCrossRefGoogle Scholar
  29. 29.
    J. R. Jokipii, Astrophys. J. 208, 900 (1976).ADSCrossRefGoogle Scholar
  30. 30.
    E. S. Seo, and V. S. Ptuskin, Astrophys. J. 431, 705 (1994).ADSCrossRefGoogle Scholar
  31. 31.
    L. J. Gleeson, and W. I. Axford, Astrophys. J. 154, 1011 (1968).ADSCrossRefGoogle Scholar
  32. 32.
    G. Di Bernardo, C. Evoli, D. Gaggero, D. Grasso, and L. Maccione, Astropart. Phys. 34, 274 (2010), arXiv: 0909.4548.ADSCrossRefGoogle Scholar
  33. 33.
    V. S. Ptuskin, I. V. Moskalenko, F. C. Jones, A. W. Strong, and V. N. Zirakashvili, Astrophys. J. 642, 902 (2006).ADSCrossRefGoogle Scholar
  34. 34.
    J. S. George, K. A. Lave, M. E. Wiedenbeck, W. R. Binns, A. C. Cummings, A. J. Davis, G. A. de Nolfo, P. L. Hink, M. H. Israel, R. A. Leske, R. A. Mewaldt, L. M. Scott, E. C. Stone, T. T. von Rosenvinge, and N. E. Yanasak, Astrophys. J. 698, 1666 (2009).ADSCrossRefGoogle Scholar
  35. 35.
    J. A. Simpson, and M. Garcia-Munoz, Space Sci. Rev. 46, 205 (1988).ADSCrossRefGoogle Scholar
  36. 36.
    J. J. Connell, Astrophys. J. 501, L59 (1998).ADSCrossRefGoogle Scholar
  37. 37.
    A. Lukasiak, Inter. Cosmic Ray Conf., 3, 41 (1999).ADSGoogle Scholar
  38. 38.
    N. E. Yanasak, M. E. Wiedenbeck, R. A. Mewaldt, A. J. Davis, A. C. Cummings, J. S. George, R. A. Leske, E. C. Stone, E. R. Christian, T. T. von Rosenvinge, W. R. Binns, P. L. Hink, and M. H. Israel, Astrophys. J. 563, 768 (2001).ADSCrossRefGoogle Scholar
  39. 39.
    T. Hams, L. M. Barbier, M. Bremerich, E. R. Christian, G. A. de Nolfo, S. Geier, H. Gobel, S. K. Gupta, M. Hof, W. Menn, R. A. Mewaldt, J. W. Mitchell, S. M. Schindler, M. Simon, and R. E. Streitmatter, Astrophys. J. 611, 892 (2004).ADSCrossRefGoogle Scholar
  40. 40.
    S. Cao, M. Biesiada, J. Jackson, X. Zheng, Y. Zhao, and Z. H. Zhu, J. Cosmol. Astropart. Phys. 2017, 012 (2017), arXiv: 1609.08748.CrossRefGoogle Scholar
  41. 41.
    Y. S. Yoon, et al. (CREAM collaboration), Astrophys. J. 839, 5 (2017), arXiv: 1704.02512.ADSCrossRefGoogle Scholar
  42. 42.
    M. J. Boschini, S. D. Torre, M. Gervasi, D. Grandi, G. Jóhannesson, G. L. Vacca, N. Masi, I. V. Moskalenko, S. Pensotti, T. A. Porter, L. Quadrani, P. G. Rancoita, D. Rozza, and M. Tacconi, Astrophys. J. 858, 61 (2018), arXiv: 1804.06956.ADSCrossRefGoogle Scholar
  43. 43.
    Y. Zhang, S. Liu, and Q. Yuan, Astrophys. J. 844, L3 (2017), arXiv: 1707.00262.ADSCrossRefGoogle Scholar
  44. 44.
    A. Kolmogorov, Akadem. SSSR Doklady 30, 301 (1941).ADSGoogle Scholar
  45. 45.
    R. H. Kraichnan, Phys. Fluids 8, 1385 (1965).ADSCrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory of Dark Matter and Space Astronomy, Purple Mountain ObservatoryChinese Academy of SciencesNanjingChina
  2. 2.School of Astronomy and Space ScienceUniversity of Science and Technology of ChinaHefeiChina
  3. 3.Center for High Energy PhysicsPeking UniversityBeijingChina

Personalised recommendations