Advertisement

Fabrication of Al/AlOx/Al Josephson junctions on silicon and sapphire substrates using a cold-development technique

  • Wei Chen
  • JiaZheng Pan
  • ZuYu Xu
  • YangYang Lv
  • XianJing Zhou
  • XueCou Tu
  • Jun Li
  • GuoZhu Sun
  • HuaBing Wang
Article
  • 27 Downloads

Abstract

In order to obtain high-quality superconducting qubits, we employed a cold-development technique, using temperatures down to −20°C, to fabricate Al/AlOx/Al Josephson junctions. Cold development greatly reduced the sensitivity of the electron-beam resist to the developer, eliminated molecules of the electron-beam resist at trench edges, and improved the repeatability and reliability of the nanopatterning process. The fabricated samples have well-defined geometries and increased dose margins, with lateral sizes of 100 nm×100 nm on both silicon and sapphire substrates. Together with the bridge-free fabrication method we used in these experiments, we believe that the cold-development technique can play an important role in quantum information technology that employs superconducting qubits.

Keywords

Josephson junction cold development electron-beam lithography insulating substrates 

References

  1. 1.
    C. Eichler, Y. Salathe, J. Mlynek, S. Schmidt, and A. Wallraff, Phys. Rev. Lett. 113, 110502 (2014).ADSCrossRefGoogle Scholar
  2. 2.
    J. Clarke, and A. I. Braginski, The SQUID Handbook (Weinhein, Wiley-VCH, 2004).CrossRefGoogle Scholar
  3. 3.
    D. E. Kirichenko, S. Sarwana, and A. F. Kirichenko, IEEE Trans. Appl. Supercond. 21, 776 (2011).ADSCrossRefGoogle Scholar
  4. 4.
    H. Grabert, and M. Devoret, Single Charge Tunneling: Coulomb Blockade Phenomena in Nanostructures (New York, Plenum Press, 1992).CrossRefGoogle Scholar
  5. 5.
    J. Majer, J. M. Chow, J. M. Gambetta, J. Koch, B. R. Johnson, J. A. Schreier, L. Frunzio, D. I. Schuster, A. A. Houck, A. Wallraff, A. Blais, M. H. Devoret, S. M. Girvin, and R. J. Schoelkopf, Nature 449, 443 (2007), arXiv: 0709.2135.ADSCrossRefGoogle Scholar
  6. 6.
    Y. H. Lin, L. B. Nguyen, N. Grabon, J. San Miguel, N. Pankratova, and V. E. Manucharyan, Phys. Rev. Lett. 120, 150503 (2018).ADSCrossRefGoogle Scholar
  7. 7.
    S. Kono, K. Koshino, Y. Tabuchi, A. Noguchi, and Y. Nakamura, Nat. Phys. 14, 546 (2018), arXiv: 1711.05479.CrossRefGoogle Scholar
  8. 8.
    A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R. S. Huang, J. Majer, S. Kumar, S. M. Girvin, and R. J. Schoelkopf, Nature 431, 162 (2004).ADSCrossRefGoogle Scholar
  9. 9.
    X. Y. Jin, A. Kamal, A. P. Sears, T. Gudmundsen, D. Hover, J. Miloshi, R. Slattery, F. Yan, J. Yoder, T. P. Orlando, S. Gustavsson, and W. D. Oliver, Phys. Rev. Lett. 114, 240501 (2015).ADSCrossRefGoogle Scholar
  10. 10.
    C. Eichler, C. Lang, J. M. Fink, J. Govenius, S. Filipp, and A. Wallraff, Phys. Rev. Lett. 109, 240501 (2012).ADSCrossRefGoogle Scholar
  11. 11.
    Y. Liu, D. Lan, X. Tan, J. Zhao, P. Zhao, M. Li, K. Zhang, K. Dai, Z. Li, Q. Liu, S. Huang, G. Xue, P. Xu, H. Yu, S. L. Zhu, and Y. Yu, Appl. Phys. Lett. 107, 202601 (2015).ADSCrossRefGoogle Scholar
  12. 12.
    G. de Lange, D. Ristè, M. Tiggelman, C. Eichler, L. Tornberg, G. Johansson, A. Wallraff, R. Schouten, and L. DiCarlo, Phys. Rev. Lett. 112, 080501 (2014), arXiv: 1311.5472.CrossRefGoogle Scholar
  13. 13.
    J. M. Martinis, and A. Megrant, arXiv: 1410.5793 (2014).Google Scholar
  14. 14.
    G. J. Dolan, Appl. Phys. Lett. 31, 337 (1977).ADSCrossRefGoogle Scholar
  15. 15.
    K. Zhang, M. M. Li, Q. Liu, H. F. Yu, and Y. Yu, Chin. Phys. B 26, 078501 (2017).ADSCrossRefGoogle Scholar
  16. 16.
    M. J. Rooks, E. Kratschmer, R. Viswanathan, J. Katine, R. E. Fontana, and S. A. MacDonald, J. Vac. Sci. Technol. B 20, 2937 (2002).CrossRefGoogle Scholar
  17. 17.
    M. S. Kim, D. H. Lee, Y. H. Cha, K. B. Kim, S. H. Jung, J. K. Lee, B. H. O, S. G. Lee, and S. G. Park, Microelectron. Eng. 123, 33 (2014).CrossRefGoogle Scholar
  18. 18.
    B. Cord, J. Lutkenhaus, and K. K. Berggren, J. Vac. Sci. Technol. B 25, 2013 (2007).CrossRefGoogle Scholar
  19. 19.
    A. Holmberg, J. Reinspach, M. Lindblom, E. Chubarova, M. Bertilson, O. von Hofsten, D. Nilsson, M. Selin, D. Larsson, P. Skoglund, U. Lundström, P. Takman, U. Vogt, and H. M. Hertz, in AIP Conference Proceedings 1365, 18 (2010).ADSGoogle Scholar
  20. 20.
    S. Gorelick, J. Vila-Comamala, V. A. Guzenko, and C. David, Microelectron. Eng. 88, 2259 (2011).CrossRefGoogle Scholar
  21. 21.
    M. A. Mohammad, C. Guthy, S. Evoy, S. K. Dew, and M. Stepanova, J. Vac. Sci. Technol. B 28, C6P36 (2010).CrossRefGoogle Scholar
  22. 22.
    J. Reinspach, M. Lindblom, O. von Hofsten, M. Bertilson, H. M. Hertz, and A. Holmberg, J. Vac. Sci. Technol. B 27, 2593 (2009).CrossRefGoogle Scholar
  23. 23.
    W. W. Hu, K. Sarveswaran, M. Lieberman, and G. H. Bernstein, J. Vac. Sci. Technol. B 22, 1711 (2004).CrossRefGoogle Scholar
  24. 24.
    R. W. Simmonds, K. M. Lang, D. A. Hite, S. Nam, D. P. Pappas, and J. M. Martinis, Phys. Rev. Lett. 93, 077003 (2004).ADSCrossRefGoogle Scholar
  25. 25.
    M. D. Reed, L. DiCarlo, B. R. Johnson, L. Sun, D. I. Schuster, L. Frunzio, and R. J. Schoelkopf, Phys. Rev. Lett. 105, 173601 (2010), arXiv: 1004.4323.ADSCrossRefGoogle Scholar
  26. 26.
    H. Paik, D. I. Schuster, L. S. Bishop, G. Kirchmair, G. Catelani, A. P. Sears, B. R. Johnson, M. J. Reagor, L. Frunzio, L. I. Glazman, S. M. Girvin, M. H. Devoret, and R. J. Schoelkopf, Phys. Rev. Lett. 107, 240501 (2011).ADSCrossRefGoogle Scholar
  27. 27.
    M. Muhammad, S. C. Buswell, S. K. Dew, and M. Stepanova, J. Vac. Sci. Technol. B 29, 06F304 (2011).CrossRefGoogle Scholar
  28. 28.
    S. Gorelick, V. A. Guzenko, J. Vila-Comamala, and C. David, Nanotechnology 21, 295303 (2010).CrossRefGoogle Scholar
  29. 29.
    G. M. Robert, Physical Chemistry (Amsterdam, Elsevier, 2000), p. 387.Google Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Wei Chen
    • 1
  • JiaZheng Pan
    • 1
  • ZuYu Xu
    • 1
  • YangYang Lv
    • 1
  • XianJing Zhou
    • 1
  • XueCou Tu
    • 1
  • Jun Li
    • 1
  • GuoZhu Sun
    • 1
  • HuaBing Wang
    • 1
  1. 1.Research Institute of Superconductor Electronics (RISE)Nanjing UniversityNanjingChina

Personalised recommendations