Advertisement

Magnetic flux control of chiral Majorana edge modes in topological superconductor

  • Yan-Feng Zhou
  • Zhe Hou
  • Peng Lv
  • XinCheng Xie
  • Qing-Feng SunEmail author
Article

Abstract

We study the transport of chiral Majorana edge modes (CMEMs) in a hybrid quantum anomalous Hall insulator-topological superconductor (QAHI-TSC) system in which the TSC region contains a Josephson junction and a cavity. The Josephson junction undergoes a topological transition when the magnetic flux through the cavity passes through half-integer multiples of magnetic flux quantum. For the trivial phase, the CMEMs transmit along the QAHI-TSC interface as without magnetic flux. However, for the nontrivial phase, a zero-energy Majorana state appears in the cavity, leading to that a CMEM can resonantly tunnel through the Majorana state to a different CMEM. These findings may provide a feasible scheme to control the transport of CMEMs by using the magnetic flux and the transport pattern can be customized by setting the size of the TSC.

Keywords

Majorana fermions Josephson junction topological superconductor non-equilibrium Green’s function 

Notes

Acknowledgements

This work was supported by the National Key Research and Development Program of China (Grant No. 2017YFA0303301), the National Basic Research Program of China (Grant No. 2015CB921102), the National Natural Science Fundation of China (Grants Nos. 11574007, and 11534001), and the Key Research Program of the Chinese Academy of Sciences (Grant No. XDPB08-4).

References

  1. 1.
    N. Read, and D. Green, Phys. Rev. B 61, 10267 (2000)ADSCrossRefGoogle Scholar
  2. 2.
    X. L. Qi, and S. C. Zhang, Rev. Mod. Phys. 83, 1057 (2011), arXiv: 1008.2026.ADSCrossRefGoogle Scholar
  3. 3.
    J. Alicea, Rep. Prog. Phys. 75, 076501 (2012), arXiv: 1202.1293.ADSCrossRefGoogle Scholar
  4. 4.
    C. W. J. Beenakker, Annu. Rev. Condens. Matter Phys. 4, 113 (2013)ADSCrossRefGoogle Scholar
  5. 5.
    S. R. Elliott, and M. Franz, Rev. Mod. Phys. 87, 137 (2015), arXiv: 1403.4976.ADSCrossRefGoogle Scholar
  6. 6.
    R. Lin, and Z. Wang, Sci. China-Phys. Mech. Astron. 59, 677401 (2016)CrossRefGoogle Scholar
  7. 7.
    N. B. Kopnin, and M. M. Salomaa, Phys. Rev. B 44, 9667 (1991)ADSCrossRefGoogle Scholar
  8. 8.
    G. E. Volovik, Jetp Lett. 70, 609 (1999)ADSCrossRefGoogle Scholar
  9. 9.
    J. P. Xu, M. X. Wang, Z. L. Liu, J. F. Ge, X. Yang, C. Liu, Z. A. Xu, D. Guan, C. L. Gao, D. Qian, Y. Liu, Q. H. Wang, F. C. Zhang, Q. K. Xue, and J. F. Jia, Phys. Rev. Lett. 114, 017001 (2015), arXiv: 1312.7110.ADSCrossRefGoogle Scholar
  10. 10.
    H. H. Sun, K. W. Zhang, L. H. Hu, C. Li, G. Y. Wang, H. Y. Ma, Z. A. Xu, C. L. Gao, D. D. Guan, Y. Y. Li, C. Liu, D. Qian, Y. Zhou, L. Fu, S. C. Li, F. C. Zhang, and J. F. Jia, Phys. Rev. Lett. 116, 257003 (2016), arXiv: 1603.02549.ADSCrossRefGoogle Scholar
  11. 11.
    M. Wimmer, A. R. Akhmerov, M. V. Medvedyeva, J. Tworzydlo, and C. W. J. Beenakker, Phys. Rev. Lett. 105, 046803 (2010), arXiv: 1002.3570.ADSCrossRefGoogle Scholar
  12. 12.
    D. A. Ivanov, Phys. Rev. Lett. 86, 268 (2001 No. 12 127811–6ADSCrossRefGoogle Scholar
  13. 13.
    C. Nayak, S. H. Simon, A. Stern, M. Freedman, and S. Das Sarma, Rev. Mod. Phys. 80, 1083 (2008), arXiv: 0707.1889.ADSCrossRefGoogle Scholar
  14. 14.
    X. L. Qi, T. L. Hughes, and S. C. Zhang, Phys. Rev. B 82, 184516 (2010), arXiv: 1003.5448.ADSCrossRefGoogle Scholar
  15. 15.
    J. Wang, Q. Zhou, B. Lian, and S. C. Zhang, Phys. Rev. B 92, 064520 (2015), arXiv: 1507.00788.ADSCrossRefGoogle Scholar
  16. 16.
    C. Z. Chang, J. Zhang, X. Feng, J. Shen, Z. Zhang, M. Guo, K. Li, Y. Ou, P. Wei, L. L. Wang, Z. Q. Ji, Y. Feng, S. Ji, X. Chen, J. Jia, X. Dai, Z. Fang, S. C. Zhang, K. He, Y. Wang, L. Lu, X. C. Ma, and Q. K. Xue, Science 340, 167 (2013), arXiv: 1605.08829.ADSCrossRefGoogle Scholar
  17. 17.
    J. G. Checkelsky, R. Yoshimi, A. Tsukazaki, K. S. Takahashi, Y. Kozuka, J. Falson, M. Kawasaki, and Y. Tokura, Nat. Phys. 10, 731 (2014), arXiv: 1406.7450.CrossRefGoogle Scholar
  18. 18.
    X. Kou, S. T. Guo, Y. Fan, L. Pan, M. Lang, Y. Jiang, Q. Shao, T. Nie, K. Murata, J. Tang, Y. Wang, L. He, T. K. Lee, W. L. Lee, and K. L. Wang, Phys. Rev. Lett. 113, 137201 (2014), arXiv: 1406.0106.ADSCrossRefGoogle Scholar
  19. 19.
    A. J. Bestwick, E. J. Fox, X. Kou, L. Pan, K. L. Wang, and D. Goldhaber-Gordon, Phys. Rev. Lett. 114, 187201 (2015), arXiv: 1412.3189.ADSCrossRefGoogle Scholar
  20. 20.
    A. Kandala, A. Richardella, S. Kempinger, C. X. Liu, and N. Samarth, Nat. Commun. 6, 7434 (2015), arXiv: 1503.03556.CrossRefGoogle Scholar
  21. 21.
    C. Z. Chang, W. Zhao, D. Y. Kim, H. Zhang, B. A. Assaf, D. Heiman, S. C. Zhang, C. Liu, M. H. W. Chan, and J. S. Moodera, Nat. Mater. 14, 473 (2015), arXiv: 1412.3758.ADSCrossRefGoogle Scholar
  22. 22.
    H. H. Sun, and J. F. Jia, Sci. China-Phys. Mech. Astron. 60, 057401 (2017)ADSCrossRefGoogle Scholar
  23. 23.
    Q. L. He, L. Pan, A. L. Stern, E. C. Burks, X. Che, G. Yin, J. Wang, B. Lian, Q. Zhou, E. S. Choi, K. Murata, X. Kou, Z. Chen, T. Nie, Q. Shao, Y. Fan, S. C. Zhang, K. Liu, J. Xia, and K. L. Wang, Science 357, 294 (2017), arXiv: 1606.05712.ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    H. Zhang, C. X. Liu, S. Gazibegovic, D. Xu, J. A. Logan, G. Wang, N. van Loo, J. D. S. Bommer, M. W. A. de Moor, D. Car, R. L. M. Ophet Veld, P. J. van Veldhoven, S. Koelling, M. A. Verheijen, M. Pendharkar, D. J. Pennachio, B. Shojaei, J. S. Lee, C. J. Palmstrøm, E. P. A. M. Bakkers, S. D. Sarma, and L. P. Kouwenhoven, Nature 556, 74 (2018), arXiv: 1710.10701.ADSCrossRefGoogle Scholar
  25. 25.
    S. Park, J. E. Moore, and H. S. Sim, Phys. Rev. B 89, 161408 (2014), arXiv: 1307.7484.ADSCrossRefGoogle Scholar
  26. 26.
    J. Alicea, Y. Oreg, G. Refael, F. von Oppen, and M. P. A. Fisher, Nat. Phys. 7, 412 (2011), arXiv: 1006.4395.CrossRefGoogle Scholar
  27. 27.
    B. van Heck, A. R. Akhmerov, F. Hassler, M. Burrello, and C. W. J. Beenakker, New J. Phys. 14, 035019 (2012), arXiv: 1111.6001.CrossRefGoogle Scholar
  28. 28.
    P. Wang, Q. Sun, and X. C. Xie, Phys. Rev. B 90, 155407 (2014), arXiv: 1404.4934.ADSCrossRefGoogle Scholar
  29. 29.
    M. Ezawa, Phys. Rev. Lett. 114, 056403 (2015), arXiv: 1409.6147.ADSCrossRefGoogle Scholar
  30. 30.
    G. L. Fatin, A. Matos-Abiague, B. Scharf, and I. Žutić, Phys. Rev. Lett. 117, 077002 (2016), arXiv: 1510.08182.ADSCrossRefGoogle Scholar
  31. 31.
    J. Liu, J. Song, Q. F. Sun, and X. C. Xie, Phys. Rev. B 96, 195307 (2017)ADSCrossRefGoogle Scholar
  32. 32.
    P. Marra, and M. Cuoco, Phys. Rev. B 95, 140504 (2017), arXiv: 1606.08450.ADSCrossRefGoogle Scholar
  33. 33.
    H. D. Wu, and T. Zhou, Phys. Rev. B 96, 184508 (2017), arXiv: 1710.04421.ADSCrossRefGoogle Scholar
  34. 34.
    L. Fu, and C. L. Kane, Phys. Rev. Lett. 102, 216403 (2009), arXiv: 0903.2427.ADSCrossRefGoogle Scholar
  35. 35.
    A. R. Akhmerov, J. Nilsson, and C. W. J. Beenakker, Phys. Rev. Lett. 102, 216404 (2009), arXiv: 0903.2196.ADSCrossRefGoogle Scholar
  36. 36.
    H. S. Røising, and S. H. Simon, Phys. Rev. B 97, 115424 (2018)ADSCrossRefGoogle Scholar
  37. 37.
    Y. Tanaka, T. Yokoyama, and N. Nagaosa, Phys. Rev. Lett. 103, 107002 (2009), arXiv: 0907.2088.ADSCrossRefGoogle Scholar
  38. 38.
    Y. F. Zhou, Z. Hou, Y. T. Zhang, and Q. F. Sun, Phys. Rev. B 97, 115452 (2018), arXiv: 1711.03840.ADSCrossRefGoogle Scholar
  39. 39.
    R. Peierls, Z. Phys. 80, 763 (1933ADSCrossRefGoogle Scholar
  40. 40.
    S. Datta, Electronic Transport in Mesoscopic System, (Cambridge University Press, Cambridge, (1995), p. 141.CrossRefGoogle Scholar
  41. 41.
    Q. Sun, J. Wang, and T. Lin, Phys. Rev. B 59, 3831 (1999)ADSCrossRefGoogle Scholar
  42. 42.
    Q. Sun, and X. C. Xie, J. Phys.-Condens. Matter 21, 344204 (2009), arXiv: 0904.2838.CrossRefGoogle Scholar
  43. 43.
    S. Cheng, Y. Xing, J. Wang, and Q. Sun, Phys. Rev. Lett. 103, 167003 (2009), arXiv: 0910.4631.ADSCrossRefGoogle Scholar
  44. 44.
    D. H. Lee, and J. D. Joannopoulos, Phys. Rev. B 23, 4997 (1981)ADSCrossRefGoogle Scholar
  45. 45.
    Y. T. Zhang, Z. Hou, X. C. Xie, and Q. F. Sun, Phys. Rev. B 95, 245433 (2017ADSCrossRefGoogle Scholar
  46. 46.
    S. B. Chung, X. L. Qi, J. Maciejko, and S. C. Zhang, Phys. Rev. B 83, 100512 (2011), arXiv: 1008.2003.ADSCrossRefGoogle Scholar
  47. 47.
    B. Lian, J. Wang, and S. C. Zhang, Phys. Rev. B 93, 161401 (2016), arXiv: 1512.05856.ADSCrossRefGoogle Scholar
  48. 48.
    Y. H. Li, J. Liu, H. Liu, H. Jiang, Q. F. Sun, and X. C. Xie, Phys. Rev. B 98, 045141 (2018), arXiv: 1804.10872.ADSCrossRefGoogle Scholar
  49. 49.
    M. Diez, I. C. Fulga, D. I. Pikulin, M. Wimmer, A. R. Akhmerov, and C. W. J. Beenakker, Phys. Rev. B 87, 125406 (2013), arXiv: 1301.4400.ADSCrossRefGoogle Scholar
  50. 50.
    B. J. Wieder, F. Zhang, and C. L. Kane, Phys. Rev. B 89, 075106 (2014), arXiv: 1302.2113.ADSCrossRefGoogle Scholar
  51. 51.
    L. Fu, and C. L. Kane, Phys. Rev. Lett. 100, 096407 (2008), arXiv: 0707.1692.ADSCrossRefGoogle Scholar
  52. 52.
    J. Zak, Phys. Rev. Lett. 62, 2747 (1989ADSCrossRefGoogle Scholar
  53. 53.
    M. Atala, M. Aidelsburger, J. T. Barreiro, D. Abanin, T. Kitagawa, E. Demler, and I. Bloch, Nat. Phys. 9, 795 (2013), arXiv: 1212.0572.CrossRefGoogle Scholar
  54. 54.
    L. Fan, W. Yu, S. Zhang, H. Zhang, and J. Ding, Phys. Rev. B 94, 174307 (2016)ADSCrossRefGoogle Scholar
  55. 55.
    D. Xiao, M. C. Chang, and Q. Niu, Rev. Mod. Phys. 82, 1959 (2010), arXiv: 0907.2021.ADSCrossRefGoogle Scholar
  56. 56.
    S.-Q. Shen, Topological Insulators, (Springer-Verlag, Berlin Heidelberg, (2012), p. 56.CrossRefGoogle Scholar
  57. 57.
    R. Yu, X. L. Qi, A. Bernevig, Z. Fang, and X. Dai, Phys. Rev. B 84, 075119 (2011), arXiv: 1101.2011.ADSCrossRefGoogle Scholar
  58. 58.
    D. Gresch, G. Autés, O. V. Yazyev, M. Troyer, D. Vanderbilt, B. A. Bernevig, and A. A. Soluyanov, Phys. Rev. B 95, 075146 (2017), arXiv: 1610.08983.ADSCrossRefGoogle Scholar
  59. 59.
    B. Lian, X.-Q. Sun, A. Vaezi, X.-L. Qi, and S.-C. Zhang, arXiv: 1712.06156 2017Google Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Yan-Feng Zhou
    • 1
    • 2
  • Zhe Hou
    • 1
    • 2
  • Peng Lv
    • 1
    • 2
  • XinCheng Xie
    • 1
    • 2
    • 3
  • Qing-Feng Sun
    • 1
    • 2
    • 3
    Email author
  1. 1.International Center for Quantum Materials, School of PhysicsPeking UniversityBeijingChina
  2. 2.Collaborative Innovation Center of Quantum MatterBeijingChina
  3. 3.CAS Center for Excellence in Topological Quantum ComputationUniversity of Chinese Academy of SciencesBeijingChina

Personalised recommendations