Multiple magnetic transitions in single crystals of Ce12Fe57.5As41 and La12Fe57.5As41

  • Wei Wu
  • Jianlin LuoEmail author


Measurements of magnetic and transport properties were performed on needle-shaped single crystals of Ce12Fe57.5As41 and La12Fe57.5As41. The availability of a complete set of data enabled a side-by-side comparison between these two rare earth compounds. Both compounds exhibited multiple magnetic orders within 2–300 K and metamagnetic transitions at various fields. Ferromagnetic transitions with Curie temperatures of 100 and 125 K were found for Ce12Fe57.5As41 and La12Fe57.5As41, respectively, followed by antiferromagnetic type spin reorientations near Curie temperatures. The magnetic properties underwent complex evolution in the magnetic field for both compounds. An antiferromagnetic phase transition at about 60 K and 0.2 T was observed merely for Ce12Fe57.5As41. The field-induced magnetic phase transition occurred from antiferromagnetic to ferromagnetic structure. A strong magnetocrystalline anisotropy was evident from magnetization measurements of Ce12Fe57.5As41. A temperature-field phase diagram was present for these two rare earth systems. In addition, a logarithmic temperature dependence of electrical resistivity was observed in the two compounds within a large temperature range of 150–300 K, which is rarely found in 3D-based compounds. It may be related to Kondo scattering described by independent localized Fe 3d moments interacting with conduction electrons.


multiple magnetic phase transitions metamagnetic transition Kondo scattering 



This work was supported by the National Natural Science Foundation of China (Grant Nos. 11674375, and 11634015), the National Basic Research Program of China (Grant Nos. 2015CB921300, and 2017YFA0302901), and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB07020200).


  1. 1.
    Y. Kamihara, T. Watanabe, M. Hirano, and H. Hosono, J. Am. Chem. Soc. 130, 3296 (2008)CrossRefGoogle Scholar
  2. 2.
    G. F. Chen, Z. Li, D. Wu, G. Li, W. Z. Hu, J. Dong, P. Zheng, J. L. Luo, and N. L. Wang, Phys. Rev. Lett. 100, 247002 (2008), arXiv: 0803.3790.ADSCrossRefGoogle Scholar
  3. 3.
    Z. A. Ren, J. Yang, W. Lu, W. Yi, X. L. Shen, Z. C. Li, G. C. Che, X. L. Dong, L. L. Sun, F. Zhou, and Z. X. Zhao, Europhys. Lett. 82, 57002 (2008), arXiv: 0803.4234.ADSCrossRefGoogle Scholar
  4. 4.
    G. F. Chen, Z. Li, G. Li, W. Z. Hu, J. Dong, J. Zhou, X. D. Zhang, P. Zhang, N. L. Wang, and J. L. Luo, Chin. Phys. Lett. 25, 3403 (2008)ADSCrossRefGoogle Scholar
  5. 5.
    J. Dong, H. J. Zhang, G. Xu, Z. Li, G. Li, W. Z. Hu, D. Wu, G. F. Chen, X. Dai, J. L. Luo, Z. Fang, and N. L. Wang, Europhys. Lett. 83, 27006 (2008), arXiv: 0803.3426.ADSCrossRefGoogle Scholar
  6. 6.
    S. S. Stoyko, P. E. R. Blanchard, and A. Mar, Inorg. Chem. 49, 2325 (2010)CrossRefGoogle Scholar
  7. 7.
    V. Fritsch, P. Pfundstein, P. Schweiss, E. Kampert, B. Pilawa, and H. V. Löhneysen, Phys. Rev. B 84, 104446 (2011)ADSCrossRefGoogle Scholar
  8. 8.
    J. C. Cooley, M. C. Aronson, Z. Fisk, and P. C. Canfield, Phys. Rev. Lett. 74, 1629 (1995ADSCrossRefGoogle Scholar
  9. 9.
    T. Susaki, Y. Takeda, M. Arita, K. Mamiya, A. Fujimori, K. Shimada, H. Namatame, M. Taniguchi, N. Shimizu, F. Iga, and T. Takabatake, Phys. Rev. Lett. 82, 992 (1995)ADSCrossRefGoogle Scholar
  10. 10.
    M. Jaime, R. Movshovich, G. R. Stewart, W. P. Beyermann, M. G. Berisso, M. F. Hundley, P. C. Canfield, and J. L. Sarrao, Nature 405, 160 (2000)ADSCrossRefGoogle Scholar
  11. 11.
    H. Kumigashira, T. Sato, T. Yokoya, T. Takahashi, S. Yoshii, and M. Kasaya, Phys. B-Condens. Matter 281–282, 284 (2000)CrossRefGoogle Scholar
  12. 12.
    V. H. Tran, S. Paschen, A. Rabis, M. Baenitz, F. Steglich, P. de V. du Plessis, and A. M. Strydom, Phys. B-Condens. Matter 312–313, 215 (2002)CrossRefGoogle Scholar
  13. 13.
    S. Yeo, S. Nakatsuji, A. D. Bianchi, P. Schlottmann, Z. Fisk, L. Balicas, P. A. Stampe, and R. J. Kennedy, Phys. Rev. Lett. 91, 046401 (2003)ADSCrossRefGoogle Scholar
  14. 14.
    A. K. L. Fan, G. H. Rosenthal, H. L. McKinzie, and A. Wold, J. Solid State Chem. 5, 136 (1972)ADSCrossRefGoogle Scholar
  15. 15.
    E. Shreder, S. V. Streltsov, A. Svyazhin, A. Makhnev, V. V. Marchenkov, A. Lukoyanov, and H. W. Weber, J. Phys.-Condens. Matter 20, 045212 (2008)ADSCrossRefGoogle Scholar
  16. 16.
    P. Volkov, and S. J. Poon, Europhys. Lett. 28, 271 (1994)ADSCrossRefGoogle Scholar
  17. 17.
    H. T. He, C. L. Yang, W. K. Ge, J. N. Wang, X. Dai, and Y. Q. Wang, Appl. Phys. Lett. 87, 162506 (2005)ADSCrossRefGoogle Scholar
  18. 18.
    J. G. Cheng, K. Matsubayashi, W. Wu, J. P. Sun, F. K. Lin, J. L. Luo, and Y. Uwatoko, Phys. Rev. Lett. 114, 117001 (2015), arXiv: 1412.7883.ADSCrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Beijing National Laboratory for Condensed Matter Physics and Institute of PhysicsChinese Academy of SciencesBeijingChina
  2. 2.Collaborative Innovation Center of Quantum MatterBeijingChina

Personalised recommendations