Electronic effect of doped oxygen atoms in Bi2201 superconductors determined by scanning tunneling microscopy

  • Ying Fei
  • KunLiang Bu
  • WenHao Zhang
  • Yuan Zheng
  • Xuan Sun
  • Ying Ding
  • XingJiang Zhou
  • Yi YinEmail author


Oxygen dopants are essential for tuning the electronic properties of the cuprate superconductors Bi2Sr2Can−1CunO2n+4+δ. Here, we study an optimally doped Bi2Sr2−xLaxCuO6+δ and an overdoped Bi2−yPbySr2CuO6+δ by scanning tunneling microscopy and spectroscopy (STM/STS). Based on the characteristic features of local STS, three forms of oxygen dopants are identified: interstitial oxygen atoms on the SrO layers, oxygen vacancies on the SrO layers, and interstitial oxygen atoms on the BiO layers. In both samples, the first form dominates the number of oxygen dopants. From the extracted spatial distribution of the oxygen dopants, we calculate the dopant concentrations and estimate the average hole carrier density. The magnitudes of the electronic pseudogap state in both samples are inhomogeneously distributed in space. The statistical analysis on the spatial distributions of the oxygen dopants and the pseudogap magnitude demonstrates that the doped oxygen atoms on the SrO layers tend to suppress the nearby pseudogap magnitude.


cuprate superconductor scanning tunneling spectroscopy doping hole concentration pseudogap 


  1. 1.
    P. A. Lee, N. Nagaosa, and X. G. Wen, Rev. Mod. Phys. 78, 17 (2006).ADSCrossRefGoogle Scholar
  2. 2.
    B. Keimer, S. A. Kivelson, M. R. Norman, S. Uchida, and J. Zaanen, Nature 518, 179 (2015).ADSCrossRefGoogle Scholar
  3. 3.
    A. Matsuda, S. Sugita, and T. Watanabe, Phys. Rev. B 60, 1377 (1999).ADSCrossRefGoogle Scholar
  4. 4.
    S. Hüfner, M. A. Hossain, A. Damascelli, and G. A. Sawatzky, Rep. Prog. Phys. 71, 062501 (2008), arXiv: 0706.4282.ADSCrossRefGoogle Scholar
  5. 5.
    Ø. Fischer, M. Kugler, I. Maggio-Aprile, C. Berthod, and C. Renner, Rev. Mod. Phys. 79, 353 (2007).ADSCrossRefGoogle Scholar
  6. 6.
    K. McElroy, Science 309, 1048 (2005).ADSCrossRefGoogle Scholar
  7. 7.
    I. Zeljkovic, Z. Xu, J. Wen, G. Gu, R. S. Markiewicz, and J. E. Hoffman, Science 337, 320 (2012).ADSCrossRefGoogle Scholar
  8. 8.
    I. Zeljkovic, J. Nieminen, D. Huang, T. R. Chang, Y. He, H. T. Jeng, Z. Xu, J. Wen, G. Gu, H. Lin, R. S. Markiewicz, A. Bansil, and J. E. Hoffman, Nano Lett. 14, 6749 (2014), arXiv: 1412.6088.ADSCrossRefGoogle Scholar
  9. 9.
    D. L. Feng, A. Damascelli, K. M. Shen, N. Motoyama, D. H. Lu, H. Eisaki, K. Shimizu, J. Shimoyama, K. Kishio, N. Kaneko, M. Greven, G. D. Gu, X. J. Zhou, C. Kim, F. Ronning, N. P. Armitage, and Z. X. Shen, Phys. Rev. Lett. 88, 107001 (2002).ADSCrossRefGoogle Scholar
  10. 10.
    H. Eisaki, N. Kaneko, D. L. Feng, A. Damascelli, P. K. Mang, K. M. Shen, Z. X. Shen, and M. Greven, Phys. Rev. B 69, 064512 (2004).ADSCrossRefGoogle Scholar
  11. 11.
    Y. He, Y. Yin, M. Zech, A. Soumyanarayanan, M. M. Yee, T. Williams, M. C. Boyer, K. Chatterjee, W. D. Wise, I. Zeljkovic, T. Kondo, T. Takeuchi, H. Ikuta, P. Mistark, R. S. Markiewicz, A. Bansil, S. Sachdev, E. W. Hudson, and J. E. Hoffman, Science 344, 608 (2014), arXiv: 1305.2778.ADSCrossRefGoogle Scholar
  12. 12.
    G. Kinoda, T. Hasegawa, S. Nakao, T. Hanaguri, K. Kitazawa, K. Shimizu, J. Shimoyama, and K. Kishio, Phys. Rev. B 67, 224509 (2003).ADSCrossRefGoogle Scholar
  13. 13.
    K. Fujita, C. K. Kim, I. Lee, J. Lee, M. H. Hamidian, I. A. Firmo, S. Mukhopadhyay, H. Eisaki, S. Uchida, M. J. Lawler, E. A. Kim, and J. C. Davis, Science 344, 612 (2014), arXiv: 1403.7788.ADSCrossRefGoogle Scholar
  14. 14.
    Z. Q. Mao, C. G. Fan, L. Shi, Z. Yao. Zhen, L. Yang, Y. Wang, and Y. H. Zhang, Phys. Rev. B 47, 14467 (1993).CrossRefGoogle Scholar
  15. 15.
    K. Fujita, T. Noda, K. M. Kojima, H. Eisaki, and S. Uchida, Phys. Rev. Lett. 95, 097006 (2005).ADSCrossRefGoogle Scholar
  16. 16.
    J. Meng, G. Liu, W. Zhang, L. Zhao, H. Liu, W. Lu, X. Dong, and X. J. Zhou, Supercond. Sci. Technol. 22, 045010 (2009), arXiv: 0903.1421.ADSCrossRefGoogle Scholar
  17. 17.
    L. Zhao, W. T. Zhang, H. Y. Liu, J. Q. Meng, G. D. Liu, W. Lu, X. L. Dong, and X. J. Zhou, Chin. Phys. Lett. 27, 087401 (2010).ADSCrossRefGoogle Scholar
  18. 18.
    Y. Zheng, Y. Fei, K. Bu, W. Zhang, Y. Ding, X. Zhou, J. E. Hoffman, and Y. Yin, Sci. Rep. 7, 8059 (2017).ADSCrossRefGoogle Scholar
  19. 19.
    J. A. Slezak, J. Lee, M. Wang, K. McElroy, K. Fujita, B. M. Andersen, P. J. Hirschfeld, H. Eisaki, S. Uchida, and J. C. Davis, Proc. Natl. Acad. Sci. USA 105, 3203 (2008), arXiv: 0809.0583.ADSCrossRefGoogle Scholar
  20. 20.
    Z. Q. Mao, G. J. Xu, S. Y. Zhang, S. Tan, B. Lu, M. L. Tian, C. G. Fan, C. Y. Xu, and Y. H. Zhang, Phys. Rev. B 55, 9130 (1997).CrossRefGoogle Scholar
  21. 21.
    G. Kinoda, H. Mashima, K. Shimizu, J. Shimoyama, K. Kishio, and T. Hasegawa, Phys. Rev. B 71, 020502(R) (2005).ADSCrossRefGoogle Scholar
  22. 22.
    M. R. Presland, J. L. Tallon, R. G. Buckley, R. S. Liu, and N. E. Flower, Physica C-Superconductivity 176, 95 (1991).ADSCrossRefGoogle Scholar
  23. 23.
    Y. Ando, Y. Hanaki, S. Ono, T. Murayama, K. Segawa, N. Miyamoto, and S. Komiya, Phys. Rev. B 61, R14956 (2000).ADSCrossRefGoogle Scholar
  24. 24.
    J. M. Luttinger, Phys. Rev. 119, 1153 (1960).ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    Y. Kohsaka, C. Taylor, P. Wahl, A. Schmidt, J. Lee, K. Fujita, J. W. Alldredge, K. McElroy, J. Lee, H. Eisaki, S. Uchida, D. H. Lee, and J. C. Davis, Nature 454, 1072 (2008).ADSCrossRefGoogle Scholar
  26. 26.
    K. McElroy, R. W. Simmonds, J. E. Hoffman, D. H. Lee, J. Orenstein, H. Eisaki, S. Uchida, and J. C. Davis, Nature 422, 592 (2003).ADSCrossRefGoogle Scholar
  27. 27.
    T. Hanaguri, Y. Kohsaka, J. C. Davis, C. Lupien, I. Yamada, M. Azuma, M. Takano, K. Ohishi, M. Ono, and H. Takagi, Nat. Phys. 3, 865 (2007), arXiv: 0708.3728.CrossRefGoogle Scholar
  28. 28.
    R. H. He, M. Hashimoto, H. Karapetyan, J. D. Koralek, J. P. Hinton, J. P. Testaud, V. Nathan, Y. Yoshida, H. Yao, K. Tanaka, W. Meevasana, R. G. Moore, D. H. Lu, S. K. Mo, M. Ishikado, H. Eisaki, Z. Hussain, T. P. Devereaux, S. A. Kivelson, J. Orenstein, A. Kapitulnik, and Z. X. Shen, Science 331, 1579 (2011), arXiv: 1103.2329.ADSCrossRefGoogle Scholar
  29. 29.
    T. Berlijn, C. H. Lin, W. Garber, and W. Ku, Phys. Rev. Lett. 108, 207003 (2012).ADSCrossRefGoogle Scholar
  30. 30.
    S. H. Pan, J. P. O’Neal, R. L. Badzey, C. Chamon, H. Ding, J. R. Engelbrecht, Z. Wang, H. Eisaki, S. Uchida, A. K. Gupta, K. W. Ng, E. W. Hudson, K. M. Lang, and J. C. Davis, Nature 413, 282 (2001).ADSCrossRefGoogle Scholar
  31. 31.
    K. M. Lang, V. Madhavan, J. E. Hoffman, E. W. Hudson, H. Eisaki, S. Uchida, and J. C. Davis, Nature 415, 412 (2002).ADSCrossRefGoogle Scholar
  32. 32.
    M. C. Boyer, W. D. Wise, K. Chatterjee, M. Yi, T. Kondo, T. Takeuchi, H. Ikuta, and E. W. Hudson, Nat. Phys. 3, 802 (2007), arXiv: 0705.1731.CrossRefGoogle Scholar
  33. 33.
    S. Zhou, H. Ding, and Z. Wang, Phys. Rev. Lett. 98, 076401 (2007).ADSCrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Ying Fei
    • 1
  • KunLiang Bu
    • 1
  • WenHao Zhang
    • 1
  • Yuan Zheng
    • 1
  • Xuan Sun
    • 2
    • 3
  • Ying Ding
    • 2
    • 3
  • XingJiang Zhou
    • 2
    • 3
  • Yi Yin
    • 1
    • 4
    Email author
  1. 1.Department of PhysicsZhejiang UniversityHangzhouChina
  2. 2.Beijing National Laboratory for Condensed Matter Physics, Institute of PhysicsChinese Academy of SciencesBeijingChina
  3. 3.Collaborative Innovation Center of Quantum MatterBeijingChina
  4. 4.Collaborative Innovation Center of Advanced MicrostructuresNanjingChina

Personalised recommendations