Torsional mechanics of single walled carbon nanotubes with hydrogen for energy storage and fuel cell applications

  • V. VijayaraghavanEmail author
  • J. F. N. Dethan
  • Liang Gao


Torsional mechanics of single walled carbon nanotubes (SWCNTs) encapsulated with hydrogen molecules was investigated in this study, using the molecular dynamics (MD) simulation approach. The torsional properties of hydrogen stored SWCNTs were crucial for determining the durability and lifetime of SWNCTs-based energy storage and proton exchange membrane fuel cell (PEMFC) applications. The influence of hydrogen storage concentration, SWCNT geometry, vacancy defects, temperature variation and varying boundaries of rotated as well as fixed groups on the torsional mechanics of SWCNT was investigated. The results and conclusions provide an insight into the torsional properties of SWCNTs with hydrogen storage that could be used for the development of SWCNTs-based hydrogen storage devices and PEMFC applications.

single walled carbon nanotubes torsional properties hydrogen molecules vacancy defects 


  1. 1.
    A. M. Fennimore, T. D. Yuzvinsky, W. Q. Han, M. S. Fuhrer, J. Cumings, and A. Zettl, Nature 424, 408 (2003).ADSCrossRefGoogle Scholar
  2. 2.
    C. Hierold, A. Jungen, C. Stampfer, and T. Helbling, Sens. Actuat. A-Phys. 136, 51 (2007).CrossRefGoogle Scholar
  3. 3.
    M. Dequesnes, S. V. Rotkin, and N. R. Aluru, Nanotechnology 13, 120 (2002).ADSCrossRefGoogle Scholar
  4. 4.
    C. H. Ke, N. Pugno, B. Peng, and H. D. Espinosa, J. Mech. Phys. Solids 53, 1314 (2005).ADSCrossRefGoogle Scholar
  5. 5.
    A. C. Dillon, K. M. Jones, T. A. Bekkedahl, C. H. Kiang, D. S. Bethune, and M. J. Heben, Nature 386, 377 (1997).ADSCrossRefGoogle Scholar
  6. 6.
    Y. L. Chen, B. Liu, J. Wu, Y. Huang, H. Jiang, and K. C. Hwang, J. Mech. Phys. Solids 56, 3224 (2008).ADSCrossRefGoogle Scholar
  7. 7.
    N. Faginas-Lago, D. Yeni, F. Huarte, Y. Wang, M. Alcamí, and F. Martin, J. Phys. Chem. A 120, 6451 (2016).CrossRefGoogle Scholar
  8. 8.
    N. Rajalakshmi, H. Ryu, M. M. Shaijumon, and S. Ramaprabhu, J. Power Sources 140, 250 (2005).ADSCrossRefGoogle Scholar
  9. 9.
    C. Wang, M. Waje, X. Wang, J. M. Tang, R. C. Haddon, and R. C. Yan, Nano Lett. 4, 345 (2004).ADSCrossRefGoogle Scholar
  10. 10.
    Y. Y. Zhang, C. M. Wang, and Y. Xiang, Carbon 48, 4100 (2010).CrossRefGoogle Scholar
  11. 11.
    Q. Xiong, and X. G. Tian, AIP Adv. 5, 107215 (2015).ADSCrossRefGoogle Scholar
  12. 12.
    Y. Wang, X. X. Wang, and X. G. Ni, Model. Simul. Mater. Sci. Eng. 12, 1099 (2004).CrossRefGoogle Scholar
  13. 13.
    A. R. Khoei, E. Ban, P. Banihashemi, and M. J. Abdolhosseini Qomi, Mater. Sci. Eng.-C 31, 452 (2011).CrossRefGoogle Scholar
  14. 14.
    H. Yazdani, K. Hatami, and M. Eftekhari, Mater. Res. Express 4, 055015 (2017).ADSCrossRefGoogle Scholar
  15. 15.
    Z. Y. Zhang, X. H. Liu, and H. Li, Int. J. Hydrogen Energy 42, 4252 (2017).CrossRefGoogle Scholar
  16. 16.
    F. Zhu, H. Liao, K. Tang, Y. Chen, and S. Liu, J. Nanomaterials 2015, 767182 (2015).Google Scholar
  17. 17.
    M. Abu-Abdeen, J. Appl. Polym. Sci. 124, 3192 (2012).CrossRefGoogle Scholar
  18. 18.
    F. Khademolhosseini, R. K. N. D. Rajapakse, and A. Nojeh, Comput. Mater. Sci. 48, 736 (2010).CrossRefGoogle Scholar
  19. 19.
    V. Vijayaraghavan, and C. H. Wong, Nano-Micro Lett. 6, 268 (2014).CrossRefGoogle Scholar
  20. 20.
    H. Ye, R. Li, Y. Zheng, Z. Zhang, Z. Zong, H. Zhang, Int. J. Damage Mech. 25, 87–97 (2016).CrossRefGoogle Scholar
  21. 21.
    L. Wang, Z. Q. Zhang, Y. G. Zheng, J. B. Wang, and H. F. Ye, Phys. Scr. 85, 045602 (2012).ADSCrossRefGoogle Scholar
  22. 22.
    Q. Wang, K. M. Liew, and V. K. Varadan, Appl. Phys. Lett. 92, 043120 (2008).ADSCrossRefGoogle Scholar
  23. 23.
    B. H. Chen, Int. J. Hydrogen Energy 39, 1382 (2014).CrossRefGoogle Scholar
  24. 24.
    M. J. Chen, Y. C. Liang, H. Z. Li, and D. Li, Chin. Phys. 15, 2676 (2006).ADSCrossRefGoogle Scholar
  25. 25.
    H. Y. Song, and X. W. Zha, Phys. B-Condensed Matter 406, 992 (2011).ADSCrossRefGoogle Scholar
  26. 26.
    D. R. Han, L. Zhu, Y. F. Dai, and C. L. Luo, Mater. Res. Express 4, 105004 (2017).CrossRefGoogle Scholar
  27. 27.
    T. Chang, Appl. Phys. Lett. 90, 201910 (2007).ADSCrossRefGoogle Scholar
  28. 28.
    Q. W. Zhang, and B. Li, Carbon 94, 826 (2015).CrossRefGoogle Scholar
  29. 29.
    Y. Y. Zhang, and C. M. Wang, J. Phys.-Condens. Matter 20, 455214 (2008).ADSCrossRefGoogle Scholar
  30. 30.
    S. Plimpton, J. Comput. Phys. 117, 1 (1995).ADSCrossRefGoogle Scholar
  31. 31.
    S. J. Stuart, A. B. Tutein, and J. A. Harrison, J. Chem. Phys. 112, 6472 (2000).ADSCrossRefGoogle Scholar
  32. 32.
    V. Vijayaraghavan, J. F. N. Dethan, and A. Garg, Comput. Mater. Sci. 146, 176 (2018).CrossRefGoogle Scholar
  33. 33.
    V. Vijayaraghavan, J. F. N. Dethan, and A. Garg, Mol. Simul. 44, 736 (2018).CrossRefGoogle Scholar
  34. 34.
    US Driving Research and Innovation for Vehicle Efficiency and Energy Sustainability. Target explanation document: Onboard hydrogen storage for light-duty fuel cell vehicles, Technical Report (US Department of Energy, 2017).Google Scholar
  35. 35.
    C. H. Wong, and V. Vijayaraghavan, Phys. Lett. A 378, 570 (2014).ADSCrossRefGoogle Scholar
  36. 36.
    V. Vijayaraghavan, and C. H. Wong, Comput. Mater. Sci. 79, 519 (2013).CrossRefGoogle Scholar
  37. 37.
    W. G. Hoover, Phys. Rev. A 31, 1695 (1985).ADSCrossRefGoogle Scholar
  38. 38.
    S. Nosé, J. Chem. Phys. 81, 511 (1984).ADSCrossRefGoogle Scholar
  39. 39.
    L. Verlet, Phys. Rev. 159, 98 (1967).ADSCrossRefGoogle Scholar
  40. 40.
    B. W. Jeong, and H. Y. Kim, Comput. Mater. Sci. 77, 7 (2013).CrossRefGoogle Scholar
  41. 41.
    B. W. Jeong, J. K. Lim, and S. B. Sinnott, J. Appl. Phys. 101, 084309 (2007).ADSCrossRefGoogle Scholar
  42. 42.
    P. A. Thrower, Br. J. Appl. Phys. 15, 1153 (1964).ADSCrossRefGoogle Scholar
  43. 43.
    Y. R. Jeng, P. C. Tsai, and T. H. Fang, J. Phys. Chem. Solids 65, 1849 (2004).ADSCrossRefGoogle Scholar
  44. 44.
    B. Motevalli, A. Montazeri, R. Tavakoli-Darestani, and H. Rafii-Tabar, Phys. E-Low-Dimens. Syst. Nanostruct. 46, 139 (2012).ADSCrossRefGoogle Scholar
  45. 45.
    S. S. Gupta, P. Agrawal, and R. C. Batra, J. Appl. Phys. 119, 245106 (2016).ADSCrossRefGoogle Scholar
  46. 46.
    Y. Zhang, C. M. Wang, and V. B. C. Tan, J. Nanosci. Nanotech. 9, 4870 (2009).CrossRefGoogle Scholar
  47. 47.
    K. Min, and N. R. Aluru, Appl. Phys. Lett. 98, 013113 (2011).ADSCrossRefGoogle Scholar
  48. 48.
    K. M. Liew, X. Q. He, and C. H. Wong, Acta Mater. 52, 2521 (2004).CrossRefGoogle Scholar
  49. 49.
    J. Lu, and L. Zhang, Comput. Mater. Sci. 35, 432 (2006).CrossRefGoogle Scholar
  50. 50.
    A. R. Hall, L. An, J. Liu, L. Vicci, M. R. Falvo, R. Superfine, and S. Washburn, Phys. Rev. Lett. 96, 256102 (2006).ADSCrossRefGoogle Scholar
  51. 51.
    D. Srivastava, C. Wei, and K. Cho, Appl. Mech. Rev. 56, 215 (2003).ADSCrossRefGoogle Scholar
  52. 52.
    V. Vijayaraghavan, and L. Zhang, Nanomaterials 8, 546 (2018).CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • V. Vijayaraghavan
    • 1
    • 2
    Email author
  • J. F. N. Dethan
    • 2
  • Liang Gao
    • 3
  1. 1.School of Mechanical and Manufacturing EngineeringUniversity of New South WalesSydneyAustralia
  2. 2.School of EngineeringMonash University MalaysiaSelangor Darul EhsanMalaysia
  3. 3.State Key Laboratory for Digital Manufacturing Equipment and TechnologyHuazhong University of Science and TechnologyWuhanChina

Personalised recommendations