Advertisement

Twisted optical communications using orbital angular momentum

  • Jian Wang
Invited Review
  • 229 Downloads

Abstract

Angular momentum, a fundamental physical quantity, can be divided into spin angular momentum (SAM) and orbital angular momentum (OAM) in electromagnetic waves. Helically-phased or twisted light beams carrying OAM that exploit the spatial structure physical dimension of electromagnetic waves have benefited wide applications ranging from optical manipulation to quantum information processing. Using the two distinct properties of OAM, i.e., inherent orthogonality and unbounded states in principle, one can develop OAM modulation and OAM multiplexing techniques for twisted optical communications. OAM multiplexing is an alternative space-division multiplexing approach employing an orthogonal mode basis related to the spatial phase structure. In this paper, we review the recent progress in twisted optical communications using OAM in free space and fiber. The basic concept of momentum, angular momentum, SAM, OAM and OAM-carrying twisted optical communications, key techniques and devices of OAM generation/(de)multiplexing/detection, high-capacity spectrally-efficient free-space OAM links, fiber-based OAM links, and OAM processing functions are presented. Ultra-high spectral efficiency and petabit-scale freespace data links are achieved benefiting from OAM multiplexing. The key techniques and challenges of twisted optical communications are also discussed. Twisted optical communications using OAM are compatible with other existing physical dimensions such as frequency/wavelength, amplitude, phase, polarization and time, opening a possible way to facilitate continuous increase of the aggregate transmission capacity and spectral efficiency through N-dimensional multiplexing.

Keywords

fiber optical communications free-space optical communications modulation multiplexing orbital angular momentum space-division multiplexing spectral efficiency twisted optical communications twisted light structured light 

Notes

Acknowledgements

This work was supported by the National Basic Research Program of China (Grant No. 2014CB340004), the National Natural Science Foundation of China (Grant Nos. 11574001, 61761130082, 11774116, 11274131, and 61222502), the Royal Society-Newton Advanced Fellowship, the National Program for Support of Top-notch Young Professionals, the Yangtze River Excellent Young Scholars Program, the Natural Science Foundation of Hubei Province of China (Grant No. 2018CFA048), and the Program for HUST Academic Frontier Youth Team. The authors would like to gratefully acknowledge Shuhui Li, Jun Liu, Long Zhu, Jing Du, Zhe Zhao, Yifan Zhao, Shi Chen, Xiao Hu, Liang Fang, Shuang Zheng, Nan Zhou and Lulu Wang from Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Ming Luo, Chao Li, Dequan Xie and Qi Yang from the State Key Laboratory of Optical Comm. Technologies and Networks, Fan Zhang from Peking University, and Alan E. Willner from Department of Electrical Engineering, University of Southern California for their technical supports.

References

  1. 1.
    J. C. Maxwell, Philos. Trans. R. Soc. London 155, 459 (2013).CrossRefGoogle Scholar
  2. 2.
    P. J. Winzer, IEEE LEOS Newslett. 23, 4 (2009).Google Scholar
  3. 3.
    P. J. Winzer, and G. J. Foschini, Opt. Express 19, 16680 (2011).ADSCrossRefGoogle Scholar
  4. 4.
    X. Zhou, and J. J. Yu, J. Lightwave Technol. 27, 3641 (2009).ADSCrossRefGoogle Scholar
  5. 5.
    P. J. Winzer, A. H. Gnauck, C. R. Doerr, M. Magarini, and L. L. Buhl, J. Lightwave Technol. 28, 547 (2010).ADSCrossRefGoogle Scholar
  6. 6.
    D. Qian, M. F. Huang, E. Ip, Y. K. Huang, Y. Shao, J. Hu, and T. Wang, J. Lightwave Technol. 30, 1540 (2012).ADSCrossRefGoogle Scholar
  7. 7.
    Y. Koizumi, K. Toyoda, M. Yoshida, and M. Nakazawa, Opt. Express 20, 12508 (2012).ADSCrossRefGoogle Scholar
  8. 8.
    S. Beppu, K. Kasai, M. Yoshida, and M. Nakazawa, Opt. Express 23, 4960 (2015).ADSCrossRefGoogle Scholar
  9. 9.
    T. Richter, E. Palushani, C. Schmidt-Langhorst, R. Ludwig, L. Molle, M. Nolle, and C. Schubert, J. Lightwave Technol. 30, 504 (2012).ADSCrossRefGoogle Scholar
  10. 10.
    D. J. Richardson, J. M. Fini, and L. E. Nelson, Nat. Photon. 7, 354 (2013). arXiv: 1303.3908.ADSCrossRefGoogle Scholar
  11. 11.
    G. Li, N. Bai, N. Zhao, and C. Xia, Adv. Opt. Photon. 6, 413 (2014).CrossRefGoogle Scholar
  12. 12.
    P. J. Winzer, Bell Labs Tech. J. 19, 22 (2014).CrossRefGoogle Scholar
  13. 13.
    P. J. Winzer, Nat. Photon. 8, 345 (2014).ADSCrossRefGoogle Scholar
  14. 14.
    J. Sakaguchi, Y. Awaji, N. Wada, A. Kanno, T. Kawanishi, T. Hayashi, T. Taru, T. Kobayashi, and M. Watanabe, J. Lightwave Technol. 30, 658 (2012).ADSCrossRefGoogle Scholar
  15. 15.
    H. Takara, A. Sano, T. Kobayashi, H. Kubota, H. Kawakami, A. Matsuura, Y. Miyamoto, Y. Abe, H. Ono, K. Shikama, Y. Goto, K. Tsujikawa, Y. Sasaki, I. Ishida, K. Takenaga, S. Matsuo, K. Saitoh, M. Koshiba, and T. Morioka, in 1.01-Pb/s (12 SDM/222 WDM/456 Gb/s) Crosstalk-managed Transmission with 91.4-b/s/Hz Aggregate Spectral Efficiency: European Conference and Exhibition on Optical Communication 2012, Amsterdam, Netherlands, 16–20 September 2012 (OSA Technical Digest, Amsterdam, 2012), paper Th.3.C.1.Google Scholar
  16. 16.
    B. J. Puttnam, R. Luis, J. M. Delgado-Mendinueta, J. Sakaguchi, W. Klaus, Y. Awaji, N. Wada, A. Kanno, and T. Kawanishi, Opt. Express 22, 21185 (2014).ADSCrossRefGoogle Scholar
  17. 17.
    R. Ryf, S. Randel, A. H. Gnauck, C. Bolle, A. Sierra, S. Mumtaz, M. Esmaeelpour, E. C. Burrows, R. J. Essiambre, P. J. Winzer, D. W. Peckham, A. H. McCurdy, and R. Lingle, J. Lightwave Technol. 30, 521 (2012).ADSCrossRefGoogle Scholar
  18. 18.
    P. Sillard, M. Bigot-Astruc, and D. Molin, J. Lightwave Technol. 32, 2824 (2014).ADSCrossRefGoogle Scholar
  19. 19.
    L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, Phys. Rev. A 45, 8185 (1992).ADSCrossRefGoogle Scholar
  20. 20.
    M. Padgett, J. Courtial, and L. Allen, Phys. Today 57, 35 (2004).ADSCrossRefGoogle Scholar
  21. 21.
    S. Franke-Arnold, L. Allen, and M. Padgett, Laser Photon. Rev. 2, 299 (2008).ADSCrossRefGoogle Scholar
  22. 22.
    A. M. Yao, and M. J. Padgett, Adv. Opt. Photon. 3, 161 (2011).CrossRefGoogle Scholar
  23. 23.
    M. Padgett, Proc. R. Soc. A-Math. Phys. Eng. Sci. 470, 20140633 (2014)ADSCrossRefGoogle Scholar
  24. 24.
    M. J. Padgett, Opt. Express 25, 11265 (2017).ADSCrossRefGoogle Scholar
  25. 25.
    A. E. Willner, J. Wang, and H. Huang, Science 337, 655 (2012).ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, Adv. Opt. Photon. 7, 66 (2015).CrossRefGoogle Scholar
  27. 27.
    J. Wang, Photon. Res. 4, B14 (2016)CrossRefGoogle Scholar
  28. 28.
    J. Wang, Chin. Opt. Lett. 15, 030005 (2017).ADSCrossRefGoogle Scholar
  29. 29.
    K. Dholakia, and T. Čižmár, Nat. Photon. 5, 335 (2011).ADSCrossRefGoogle Scholar
  30. 30.
    L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, and K. Dholakia, Science 292, 912 (2001).ADSCrossRefGoogle Scholar
  31. 31.
    M. Padgett, and R. Bowman, Nat. Photon. 5, 343 (2011).ADSCrossRefGoogle Scholar
  32. 32.
    N. B. Simpson, K. Dholakia, L. Allen, and M. J. Padgett, Opt. Lett. 22, 52 (1997).ADSCrossRefGoogle Scholar
  33. 33.
    J. Leach, M. R. Dennis, J. Courtial, and M. J. Padgett, Nature 432, 165 (2004).ADSCrossRefGoogle Scholar
  34. 34.
    M. R. Dennis, R. P. King, B. Jack, K. O’Holleran, and M. J. Padgett, Nat. Phys. 6, 118 (2010).CrossRefGoogle Scholar
  35. 35.
    M. P. J. Lavery, F. C. Speirits, S. M. Barnett, and M. J. Padgett, Science 341, 537 (2013).ADSCrossRefGoogle Scholar
  36. 36.
    D. Giovannini, J. Romero, V. Potoček, G. Ferenczi, F. Speirits, S. M. Barnett, D. Faccio, and M. J. Padgett, Science 347, 857 (2015). arXiv: 1411.3987.ADSCrossRefGoogle Scholar
  37. 37.
    L. Fang, M. J. Padgett, and J. Wang, Laser Photon. Rev. 11, 1700183 (2017)ADSCrossRefGoogle Scholar
  38. 38.
    S. Bernet, A. Jesacher, S. Fürhapter, C. Maurer, and M. Ritsch-Marte, Opt. Express 14, 3792 (2006).ADSCrossRefGoogle Scholar
  39. 39.
    N. M. Elias II, Astron. Astrophys. 492, 883 (2008).ADSCrossRefGoogle Scholar
  40. 40.
    A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, Nature 412, 313 (2001).ADSCrossRefGoogle Scholar
  41. 41.
    J. Leach, B. Jack, J. Romero, A. K. Jha, A. M. Yao, S. Franke-Arnold, D. G. Ireland, R. W. Boyd, S. M. Barnett, and M. J. Padgett, Science 329, 662 (2010).ADSCrossRefGoogle Scholar
  42. 42.
    M. Okida, T. Omatsu, M. Itoh, and T. Yatagai, Opt. Express 15, 7616 (2007).ADSCrossRefGoogle Scholar
  43. 43.
    A. J. Lee, C. Zhang, T. Omatsu, and H. M. Pask, Opt. Express 22, 5400 (2014).ADSCrossRefGoogle Scholar
  44. 44.
    P. Miao, Z. Zhang, J. Sun, W. Walasik, S. Longhi, N. M. Litchinitser, and L. Feng, Science 353, 464 (2016).ADSCrossRefGoogle Scholar
  45. 45.
    M. W. Beijersbergen, L. Allen, H. E. L. O. van der Veen, and J. P. Woerdman, Opt. Commun. 96, 123 (1993).ADSCrossRefGoogle Scholar
  46. 46.
    L. Marrucci, E. Karimi, S. Slussarenko, B. Piccirillo, E. Santamato, E. Nagali, and F. Sciarrino, J. Opt. 13, 064001 (2011).ADSCrossRefGoogle Scholar
  47. 47.
    M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, Opt. Commun. 112, 321 (1994).ADSCrossRefGoogle Scholar
  48. 48.
    S. S. R. Oemrawsingh, J. A. W. van Houwelingen, E. R. Eliel, J. P. Woerdman, E. J. K. Verstegen, J. G. Kloosterboer, and G. W. Hooft, Appl. Opt. 43, 688 (2004).ADSCrossRefGoogle Scholar
  49. 49.
    N. R. Heckenberg, R. McDuff, C. P. Smith, and A. G. White, Opt. Lett. 17, 221 (1992).ADSCrossRefGoogle Scholar
  50. 50.
    M. Mirhosseini, O. S. Magaña-Loaiza, C. Chen, B. Rodenburg, M. Malik, and R. W. Boyd, Opt. Express 21, 30196 (2013). arXiv: 1311.4811.ADSCrossRefGoogle Scholar
  51. 51.
    L. Zhu, and J. Wang, Sci. Rep. 4, 7441 (2015).CrossRefGoogle Scholar
  52. 52.
    J. Liu, and J. Wang, Sci. Rep. 5, 9959 (2015).ADSCrossRefGoogle Scholar
  53. 53.
    C. Maurer, A. Jesacher, S. Bernet, and M. Ritsch-Marte, Laser Photon. Rev. 5, 81 (2011).ADSCrossRefGoogle Scholar
  54. 54.
    A. Forbes, A. Dudley, and M. McLaren, Adv. Opt. Photon. 8, 200 (2016).CrossRefGoogle Scholar
  55. 55.
    Y. Yan, J. Wang, L. Zhang, J. Y. Yang, I. M. Fazal, N. Ahmed, B. Shamee, A. E. Willner, K. Birnbaum, and S. Dolinar, Opt. Lett. 36, 4269 (2011).ADSCrossRefGoogle Scholar
  56. 56.
    Y. Yan, L. Zhang, J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, A. E. Willner, and S. J. Dolinar, Opt. Lett. 37, 3294 (2012).ADSCrossRefGoogle Scholar
  57. 57.
    Y. Yan, Y. Yue, H. Huang, J. Y. Yang, M. R. Chitgarha, N. Ahmed, M. Tur, S. J. Dolinar, and A. E. Willner, Opt. Lett. 37, 3645 (2012).ADSCrossRefGoogle Scholar
  58. 58.
    H. Xu, and L. Yang, Opt. Lett. 38, 1978 (2013).ADSCrossRefGoogle Scholar
  59. 59.
    G. K. L. Wong, M. S. Kang, H. W. Lee, F. Biancalana, C. Conti, T. Weiss, and P. S. J. Russell, Science 337, 446 (2012).ADSCrossRefGoogle Scholar
  60. 60.
    S. Li, Q. Mo, X. Hu, C. Du, and J. Wang, Opt. Lett. 40, 4376 (2015).ADSCrossRefGoogle Scholar
  61. 61.
    L. Fang, and J. Wang, Opt. Lett. 40, 4010 (2015).ADSCrossRefGoogle Scholar
  62. 62.
    Y. F. Yu, Y. H. Fu, X. M. Zhang, A. Q. Liu, T. Bourouina, T. Mei, Z. X. Shen, and D. P. Tsai, Opt. Express 18, 21651 (2010).ADSCrossRefGoogle Scholar
  63. 63.
    T. Su, R. P. Scott, S. S. Djordjevic, N. K. Fontaine, D. J. Geisler, X. Cai, and S. J. B. Yoo, Opt. Express 20, 9396 (2012).ADSCrossRefGoogle Scholar
  64. 64.
    D. Zhang, X. Feng, and Y. Huang, Opt. Express 20, 26986 (2012).ADSCrossRefGoogle Scholar
  65. 65.
    X. Cai, J. Wang, M. J. Strain, B. Johnson-Morris, J. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. Yu, Science 338, 363 (2012).ADSCrossRefGoogle Scholar
  66. 66.
    B. Guan, R. P. Scott, C. Qin, N. K. Fontaine, T. Su, C. Ferrari, M. Cappuzzo, F. Klemens, B. Keller, M. Earnshaw, and S. J. B. Yoo, Opt. Express 22, 145 (2014).ADSCrossRefGoogle Scholar
  67. 67.
    M. J. Strain, X. Cai, J. Wang, J. Zhu, D. B. Phillips, L. Chen, M. Lopez-Garcia, J. L. O’Brien, M. G. Thompson, M. Sorel, and S. Yu, Nat. Commun. 5, 4856 (2014).ADSCrossRefGoogle Scholar
  68. 68.
    S. Zheng, and J. Wang, Opt. Express 25, 18492 (2017).ADSCrossRefGoogle Scholar
  69. 69.
    J. Du, and J. Wang, Opt. Lett. 42, 5054 (2017).ADSCrossRefGoogle Scholar
  70. 70.
    J. Liu, S. Li, Y. Ding, S. Chen, C. Du, Q. Mo, T. Morioka, K. Yvind, L. K. Oxenløwe, S. Yu, X. Cai, and J. Wang, Opt. Express 26, 15471 (2018).ADSCrossRefGoogle Scholar
  71. 71.
    N. Zhou, S. Zheng, X. Cao, S. Gao, S. Li, M. He, X. Cai, and J. Wang, Opt. Lett. 43, 3140 (2018).ADSCrossRefGoogle Scholar
  72. 72.
    N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, Science 334, 333 (2011).ADSCrossRefGoogle Scholar
  73. 73.
    Z. Zhao, J. Wang, S. Li, and A. E. Willner, Opt. Lett. 38, 932 (2013).ADSCrossRefGoogle Scholar
  74. 74.
    G. Li, M. Kang, S. Chen, S. Zhang, E. Y. B. Pun, K. W. Cheah, and J. Li, Nano Lett. 13, 4148 (2013).ADSCrossRefGoogle Scholar
  75. 75.
    Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, Nano Lett. 14, 1394 (2014).ADSCrossRefGoogle Scholar
  76. 76.
    E. Karimi, S. A. Schulz, I. de Leon, H. Qassim, J. Upham, and R. W. Boyd, Light Sci. Appl. 3, e167 (2014)CrossRefGoogle Scholar
  77. 77.
    J. Du, and J. Wang, Sci. Rep. 5, 9662 (2015).ADSCrossRefGoogle Scholar
  78. 78.
    Y. Zhao, J. Du, J. Zhang, L. Shen, and J. Wang, Appl. Phys. Lett. 112, 171103 (2018).ADSCrossRefGoogle Scholar
  79. 79.
    J. Du, and J. Wang, Opt. Express 26, 13183 (2018).ADSCrossRefGoogle Scholar
  80. 80.
    N. Zhou, and J. Wang, Sci. Rep. 8, 8038 (2018).ADSCrossRefGoogle Scholar
  81. 81.
    J. Wang, Chin. Opt. Lett. 16, 050006 (2018).CrossRefGoogle Scholar
  82. 82.
    J. Leach, M. J. Padgett, S. M. Barnett, S. Franke-Arnold, and J. Courtial, Phys. Rev. Lett. 88, 257901 (2002).ADSCrossRefGoogle Scholar
  83. 83.
    H. D. L. Pires, J. Woudenberg, and M. P. van Exter, Opt. Lett. 35, 889 (2010).ADSCrossRefGoogle Scholar
  84. 84.
    W. Zhang, Q. Qi, J. Zhou, and L. Chen, Phys. Rev. Lett. 112, 153601 (2014).ADSCrossRefGoogle Scholar
  85. 85.
    J. Xin, C. Gao, C. Li, and Z. Wang, Appl. Phys. B 108, 703 (2012).ADSCrossRefGoogle Scholar
  86. 86.
    S. Zheng, and J. Wang, Sci. Rep. 7, 40781 (2017).ADSCrossRefGoogle Scholar
  87. 87.
    P. Genevet, J. Lin, M. A. Kats, and F. Capasso, Nat. Commun. 3, 1278 (2012).ADSCrossRefGoogle Scholar
  88. 88.
    A. Belmonte, and J. P. Torres, Opt. Lett. 38, 241 (2013).ADSCrossRefGoogle Scholar
  89. 89.
    S. Li, and J. Wang, Sci. Rep. 5, 15406 (2015).ADSCrossRefGoogle Scholar
  90. 90.
    T. Lei, M. Zhang, Y. Li, P. Jia, G. N. Liu, X. Xu, Z. Li, C. Min, J. Lin, C. Yu, H. Niu, and X. Yuan, Light Sci. Appl. 4, e257 (2015)ADSCrossRefGoogle Scholar
  91. 91.
    G. C. G. Berkhout, M. P. J. Lavery, J. Courtial, M. W. Beijersbergen, and M. J. Padgett, Phys. Rev. Lett. 105, 153601 (2010).ADSCrossRefGoogle Scholar
  92. 92.
    M. N. O’Sullivan, M. Mirhosseini, M. Malik, and R. W. Boyd, Opt. Express 20, 24444 (2012). arXiv: 1208.2891.ADSCrossRefGoogle Scholar
  93. 93.
    A. Dudley, T. Mhlanga, M. Lavery, A. McDonald, F. S. Roux, M. Padgett, and A. Forbes, Opt. Express 21, 165 (2013).ADSCrossRefGoogle Scholar
  94. 94.
    R. Fickler, R. Lapkiewicz, M. Huber, M. P. J. Lavery, M. J. Padgett, and A. Zeilinger, Nat. Commun. 5, 4502 (2014). arXiv: 1402.2423.ADSCrossRefGoogle Scholar
  95. 95.
    M. Mirhosseini, M. Malik, Z. Shi, and R. W. Boyd, Nat. Commun. 4, 2781 (2013). arXiv: 1306.0849.ADSCrossRefGoogle Scholar
  96. 96.
    M. Malik, M. Mirhosseini, M. P. J. Lavery, J. Leach, M. J. Padgett, and R. W. Boyd, Nat. Commun. 5, 3115 (2014). arXiv: 1306.0619.ADSCrossRefGoogle Scholar
  97. 97.
    G. Milione, H. Huang, M. Lavery, A. Willner, R. R. Alfano, T. A. Nguyen, and M. J. Padgett, in Orbital-Angular-Momentum Mode (De)Multiplexer: A Single Optical Element for MIMO-based and Non-MIMO-Based Multimode Fiber Systems: Proceeding of OFC, 9–13 March 2014 (IEEE, San Francisco, 2014), paper M3K.6.Google Scholar
  98. 98.
    G. Labroille, B. Denolle, P. Jian, P. Genevaux, N. Treps, and J. F. Morizur, Opt. Express 22, 15599 (2014). arXiv: 1404.6455.ADSCrossRefGoogle Scholar
  99. 99.
    A. E. Willner, and J. Wang, in Optical Communications Using Light Beams Carrying Orbital Angular Momentum: 2012 Conference on Lasers and Electro-Optics (CLEO), 6–11 May 2012 (IEEE, San Jose, 2012), paper JTu2K.1.CrossRefGoogle Scholar
  100. 100.
    J. Wang, and A. E. Willner, in Using Orbital Angular Momentum Modes for Optical Transmission: Proceeding of OFC, 9–13 March 2014 (IEEE, San Francisco, 2014), paper W4J.5.CrossRefGoogle Scholar
  101. 101.
    G. Gibson, J. Courtial, M. J. Padgett, M. Vasnetsov, V. Pas’ko, S. M. Barnett, and S. Franke-Arnold, Opt. Express 12, 5448 (2004).ADSCrossRefGoogle Scholar
  102. 102.
    Y. Awaji, N. Wada, and Y. Toda, in Demonstration of Spatial Mode Division Multiplexing Using Laguerre-Gaussian Mode Beam in Telecom-wavelength: 23rd Annual Meeting of the IEEE Photonics Society, 7–11 November 2010, Denver, CO, USA (IEEE, Denver, 2010).CrossRefGoogle Scholar
  103. 103.
    J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, B. Shamee, A. E. Willner, K. Birnbaum, J. Choi, B. Erkmen, S. Dolinar, and M. Tur, in Demonstration of 12.8-bit/s/Hz Spectral Efficiency Using 16–QAM Signals Over Multiple Orbital-Angular-Momentum Modes: 37th European Conference and Exposition on Optical Communications (OSA Technical, Geneva, 2011), paper We.10.P1.76.Google Scholar
  104. 104.
    J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, B. Shamee, A. E. Willner, K. Birnbaum, J. Choi, B. Erkmen, S. Dolinar, and M. Tur, in 25.6-bit/s/Hz Spectral Efficiency Using 16-QAM Signals Over Pol-Muxed Multiple Orbital-Angular-Momentum Modes: Proceeding of IEEE Photonic Society 24th Annual Meeting (IEEE, Arlington, 2011), paper WW2.Google Scholar
  105. 105.
    J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, Nat. Photon. 6, 488 (2012).ADSCrossRefGoogle Scholar
  106. 106.
    J. Wang, S. Li, C. Li, L. Zhu, C. Gui, D. Xie, Y. Qiu, Q. Yang, and S. Yu, in Ultra-high 230-bit/s/Hz Spectral Efficiency Using OFDM/ OQAM 64-QAM Signals Over Pol-Muxed 22 Orbital Angular Momentum (OAM) Modes: Proceedings of Optical Fiber Communication Conference (San Francisco, CA, USA 2014), paper W1H.4.CrossRefGoogle Scholar
  107. 107.
    J. Wang, J. Liu, X. Lv, L. Zhu, D. Wang, S. Li, A. Wang, Y. Zhao, Y. Long, J. Du, X. Hu, N. Zhou, S. Chen, L. Fang, and F. Zhang, in Ultra-high 435-bit/s/Hz spectral efficiency using N-dimentional multiplexing and modulation link with pol-muxed 52 orbital angular momentum (OAM) modes carrying Nyquist 32-QAM signals: Conference: 2015 European Conference on Optical Communication, 2015 paper Th.2.5.4.Google Scholar
  108. 108.
    I. M. Fazal, N. Ahmed, J. Wang, J. Y. Yang, Y. Yan, B. Shamee, H. Huang, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, Opt. Lett. 37, 4753 (2012).ADSCrossRefGoogle Scholar
  109. 109.
    H. Huang, G. Xie, Y. Yan, N. Ahmed, Y. Ren, Y. Yue, D. Rogawski, M. J. Willner, B. I. Erkmen, K. M. Birnbaum, S. J. Dolinar, M. P. J. Lavery, M. J. Padgett, M. Tur, and A. E. Willner, Opt. Lett. 39, 197 (2014).ADSCrossRefGoogle Scholar
  110. 110.
    J. Wang, S. Li, M. Luo, J. Liu, L. Zhu, C. Li, D. Xie, Q. Yang, S. Yu, J. Sun, X. Zhang, W. Shieh, and A. E. Willner, in N-dimentional Multiplexing Link With 1.036-Pbit/s Transmission Capacity and 112.6-bit/s/Hz Spectral Efficiency Using OFDM-8QAM Signals Over 368 WDM Pol-muxed 26 OAM Modes: The European Conference on Optical Communication (ECOC) (IEEE, Cannes, 2014), paper Mo.4.5.1.Google Scholar
  111. 111.
    Y. Fang, J. Yu, J. Zhang, N. Chi, J. Xiao, and G. K. Chang, Opt. Lett. 39, 4168 (2014).ADSCrossRefGoogle Scholar
  112. 112.
    M. Krenn, R. Fickler, M. Fink, J. Handsteiner, M. Malik, T. Scheidl, R. Ursin, and A. Zeilinger, New J. Phys. 16, 113028 (2014).CrossRefGoogle Scholar
  113. 113.
    J. Liu, and J. Wang, Opt. Express 24, 4258 (2016).ADSCrossRefGoogle Scholar
  114. 114.
    M. Krenn, J. Handsteiner, M. Fink, R. Fickler, R. Ursin, M. Malik, and A. Zeilinger, Proc. Natl. Acad. Sci. 113, 13648 (2016). arXiv: 1606.01811.ADSCrossRefGoogle Scholar
  115. 115.
    S. Li, and J. Wang, Opt. Express 25, 21537 (2017).ADSCrossRefGoogle Scholar
  116. 116.
    S. Ramachandran, P. Kristensen, and M. F. Yan, Opt. Lett. 34, 2525 (2009).ADSCrossRefGoogle Scholar
  117. 117.
    N. Bozinovic, P. Kristensen, and S. Ramachandran, in Long-range Fiber-transmission of Photons with Orbital Angular Momentum: CLEO: 2011 Laser Applications to Photonic Applications (OSA Technical, Baltimore, 2011), paper CTuB1.Google Scholar
  118. 118.
    N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, A. E. Willner, and S. Ramachandran, in Orbital Angular Momentum (OAM) Based Mode Division Multiplexing (MDM) Over a km-length Fiber: European Conference and Exhibition on Optical Communication (OSA Technical Digest, Amsterdam, 2012), paper Th.3.C.6.CrossRefGoogle Scholar
  119. 119.
    Y. Yue, Y. Yan, N. Ahmed, J.-Y. Yang, L. Zhang, Y. X. Ren, H. Huang, K. M. Birnbaum, B. I. Erkmen, S. Dolinar, M. Tur, and A. E. Willner, IEEE Photon. J. 4, 535 (2012).ADSCrossRefGoogle Scholar
  120. 120.
    N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, Science 340, 1545 (2013).ADSCrossRefGoogle Scholar
  121. 121.
    P. Gregg, P. Kristensen, S. E. Golowich, J. Ø. Olsen, P. Steinvurzel, and S. Ramachandran, in Stable Transmission of 12 OAM States in Air-core Fiber: Proceeding of CLEO (IEEE, San Jose, 2013), paper CTu2K.2.CrossRefGoogle Scholar
  122. 122.
    C. Brunet, P. Vaity, Y. Messaddeq, S. LaRochelle, and L. A. Rusch, Opt. Express 22, 26117 (2014).ADSCrossRefGoogle Scholar
  123. 123.
    P. Gregg, P. Kristensen, and S. Ramachandran, Optica 2, 267 (2015).CrossRefGoogle Scholar
  124. 124.
    B. Ung, P. Vaity, L. Wang, Y. Messaddeq, L. A. Rusch, and S. LaRochelle, Opt. Express 22, 18044 (2014).ADSCrossRefGoogle Scholar
  125. 125.
    S. Li, and J. Wang, Opt. Express 23, 18736 (2015).ADSCrossRefGoogle Scholar
  126. 126.
    S. Li, and J. Wang, IEEE Photon. J. 5, 7101007 (2013)ADSCrossRefGoogle Scholar
  127. 127.
    S. Li, and J. Wang, Sci. Rep. 4, 3853 (2015).CrossRefGoogle Scholar
  128. 128.
    S. Chen, and J. Wang, IEEE J. Quantum Electron. 53, 7200308 (2017)Google Scholar
  129. 129.
    S. Chen, and J. Wang, Sci. Rep. 7, 3990 (2017).ADSCrossRefGoogle Scholar
  130. 130.
    Y. Awaji, N. Wada, Y. Toda, and T. Hayashi, in Propagation of Laguerre-Gaussian Mode Light Through Multi-Core Fiber at Telecom Wavelength: CLEO: 2011-Laser Applications to Photonic Applications (OSA Technical, Baltimore, 2011), paper CThGG2.Google Scholar
  131. 131.
    H. Huang, G. Milione, M. P. J. Lavery, G. Xie, Y. Ren, Y. Cao, N. Ahmed, T. A. Nguyen, D. A. Nolan, M. J. Li, M. Tur, R. R. Alfano, and A. E. Willner, Sci. Rep. 5, 14931 (2015).ADSCrossRefGoogle Scholar
  132. 132.
    A. Wang, L. Zhu, J. Liu, C. Du, Q. Mo, and J. Wang, Opt. Express 23, 29457 (2015).ADSCrossRefGoogle Scholar
  133. 133.
    J. Liu, S. Li, J. Du, C. Klitis, C. Du, Q. Mo, M. Sorel, S. Yu, X. Cai, and J. Wang, Opt. Lett. 41, 1969 (2016).ADSCrossRefGoogle Scholar
  134. 134.
    A. Wang, L. Zhu, S. Chen, C. Du, Q. Mo, and J. Wang, Opt. Express 24, 11716 (2016).ADSCrossRefGoogle Scholar
  135. 135.
    S. Chen, J. Liu, Y. Zhao, L. Zhu, A. Wang, S. Li, J. Du, C. Du, Q. Mo, and J. Wang, Sci. Rep. 6, 38181 (2016).ADSCrossRefGoogle Scholar
  136. 136.
    L. Zhu, C. Yang, D. Xie, and J. Wang, Opt. Lett. 42, 763 (2017).ADSCrossRefGoogle Scholar
  137. 137.
    L. Zhu, J. Liu, Q. Mo, C. Du, and J. Wang, Opt. Express 24, 16934 (2016).ADSCrossRefGoogle Scholar
  138. 138.
    L. Zhu, A. Wang, S. Chen, J. Liu, Q. Mo, C. Du, and J. Wang, Opt. Express 25, 25637 (2017).ADSCrossRefGoogle Scholar
  139. 139.
    A. Wang, L. Zhu, L. Wang, J. Ai, S. Chen, and J. Wang, Opt. Express 26, 10038 (2018).ADSCrossRefGoogle Scholar
  140. 140.
    L. Zhu, A. Wang, S. Chen, J. Liu, and J. Wang, Opt. Lett. 43, 1894 (2018).ADSCrossRefGoogle Scholar
  141. 141.
    Y. Jung, Q. Kang, H. Zhou, R. Zhang, S. Chen, H. Wang, Y. Yang, X. Jin, F. P. Payne, S. Alam, and D. J. Richardson, J. Lightwave Technol. 35, 1363 (2017).ADSCrossRefGoogle Scholar
  142. 142.
    G. Zhu, Z. Hu, X. Wu, C. Du, W. Luo, Y. Chen, X. Cai, J. Liu, J. Zhu, and S. Yu, Opt. Express 26, 594 (2018).ADSCrossRefGoogle Scholar
  143. 143.
    L. Zhu, G. Zhu, A. Wang, L. Wang, J. Ai, S. Chen, C. Du, J. Liu, S. Yu, and J. Wang, Opt. Lett. 43, 1890 (2018).ADSCrossRefGoogle Scholar
  144. 144.
    J. Zhang, G. Zhu, J. Liu, X. Wu, J. Zhu, C. Du, W. Luo, Y. Chen, and S. Yu, Opt. Express 26, 4243 (2018). arXiv: 1711.04646.ADSCrossRefGoogle Scholar
  145. 145.
    J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, A. E. Willner, S. J. Dolinar, and M. Tur, Experimental Demonstration of 100-Gbit/s DQPSK Data Exchange Between Orbital-angular-momentum Modes: Optical Fiber Communication Conference (OSA Technical, Los Angeles, 2012), paper OW1I.5.CrossRefGoogle Scholar
  146. 146.
    J. Liu, L. Zhu, A. Wang, S. Li, S. Chen, C. Du, Q. Mo, and J. Wang, Opt. Lett. 41, 3896 (2016).ADSCrossRefGoogle Scholar
  147. 147.
    Y. Yue, H. Huang, N. Ahmed, Y. Yan, Y. Ren, G. Xie, D. Rogawski, M. Tur, and A. E. Willner, Opt. Lett. 38, 5118 (2013).ADSCrossRefGoogle Scholar
  148. 148.
    J. Liu, and J. Wang, Sci. Rep. 6, 37331 (2016).ADSCrossRefGoogle Scholar
  149. 149.
    Y. Yan, Y. Yue, H. Huang, Y. Ren, N. Ahmed, M. Tur, S. Dolinar, and A. Willner, Opt. Lett. 38, 3930 (2013).ADSCrossRefGoogle Scholar
  150. 150.
    S. Li, J. Wang, X. Zhang, L. Zhu, C. Li and Q. Yang, in Demonstration of Simultaneous 1-to-34 Multicasting of OFDM/OQAM 64-QAM Signal from Single Gaussian Mode to Multiple Orbital Angular Momentum (OAM) Modes: Asia Communications and Photonics Conference 2013 Postdeadline (OSA Technical, Beijing, 2013), paper AF2E.5.Google Scholar
  151. 151.
    S. Li, J. Liu, C. Li, C. Gui, L. Zhu, Q. Yang and J. Wang, in Powercontrollable Multicasting of a Single Gaussian Mode to Multiple Orbital Angular Momentum (OAM) Modes: Proceeding of CLEO (OSA Technical, San Jose, 2014), paper SM3J.5.Google Scholar
  152. 152.
    L. Zhu, and J. Wang, Opt. Express 23, 26221 (2015).ADSCrossRefGoogle Scholar
  153. 153.
    S. Li, and J. Wang, Sci. Rep. 5, 9677 (2015).ADSCrossRefGoogle Scholar
  154. 154.
    H. Huang, Y. Yue, Y. Yan, N. Ahmed, Y. Ren, M. Tur, and A. E. Willner, Opt. Lett. 38, 5142 (2013).ADSCrossRefGoogle Scholar
  155. 155.
    H. Huang, Y. Ren, G. Xie, Y. Yan, Y. Yue, N. Ahmed, M. P. J. Lavery, M. J. Padgett, S. Dolinar, M. Tur, and A. E. Willner, Opt. Lett. 39, 1689 (2014).ADSCrossRefGoogle Scholar
  156. 156.
    Y. Yue, L. Zhang, Y. Yan, N. Ahmed, J. Y. Yang, H. Huang, Y. Ren, S. Dolinar, M. Tur, and A. E. Willner, Opt. Lett. 37, 1889 (2012).ADSCrossRefGoogle Scholar
  157. 157.
    Z. Y. Zhou, D. S. Ding, Y. K. Jiang, Y. Li, S. Shi, X. S. Wang, and B. S. Shi, Opt. Express 22, 20298 (2014). arXiv: 1405.1878.ADSCrossRefGoogle Scholar
  158. 158.
    C. Paterson, Phys. Rev. Lett. 94, 153901 (2005).ADSCrossRefGoogle Scholar
  159. 159.
    J. A. Anguita, M. A. Neifeld, and B. V. Vasic, Appl. Opt. 47, 2414 (2008).ADSCrossRefGoogle Scholar
  160. 160.
    B. Rodenburg, M. P. J. Lavery, M. Malik, M. N. O’Sullivan, M. Mirhosseini, D. J. Robertson, M. Padgett, and R. W. Boyd, Opt. Lett. 37, 3735 (2012). arXiv: 1205.6518.ADSCrossRefGoogle Scholar
  161. 161.
    S. M. Zhao, J. Leach, L. Y. Gong, J. Ding, and B. Y. Zheng, Opt. Express 20, 452 (2012).ADSCrossRefGoogle Scholar
  162. 162.
    Y. Ren, G. Xie, H. Huang, C. Bao, Y. Yan, N. Ahmed, M. P. J. Lavery, B. I. Erkmen, S. Dolinar, M. Tur, M. A. Neifeld, M. J. Padgett, R. W. Boyd, J. H. Shapiro, and A. E. Willner, Opt. Lett. 39, 2845 (2014).ADSCrossRefGoogle Scholar
  163. 163.
    S. Li, and J. Wang, Opt. Lett. 41, 1482 (2016).ADSCrossRefGoogle Scholar
  164. 164.
    S. Li, S. Chen, C. Gao, A. E. Willner, and J. Wang, Opt. Commun. 408, 68 (2018).ADSCrossRefGoogle Scholar
  165. 165.
    I. B. Djordjevic, and M. Arabaci, Opt. Express 18, 24722 (2010).ADSCrossRefGoogle Scholar
  166. 166.
    I. B. Djordjevic, Opt. Express 19, 14277 (2011).ADSCrossRefGoogle Scholar
  167. 167.
    J. Baghdady, K. Miller, K. Morgan, M. Byrd, S. Osler, R. Ragusa, W. Li, B. M. Cochenour, and E. G. Johnson, Opt. Express 24, 9794 (2016).ADSCrossRefGoogle Scholar
  168. 168.
    Y. Ren, L. Li, Z. Wang, S. M. Kamali, E. Arbabi, A. Arbabi, Z. Zhao, G. Xie, Y. Cao, N. Ahmed, Y. Yan, C. Liu, A. J. Willner, S. Ashrafi, M. Tur, A. Faraon, and A. E. Willner, Sci. Rep. 6, 33306 (2016). arXiv: 1604.06865.ADSCrossRefGoogle Scholar
  169. 169.
    Y. Zhao, J. Xu, A. Wang, W. Lv, L. Zhu, S. Li, and J. Wang, Opt. Express 25, 28743 (2017).ADSCrossRefGoogle Scholar
  170. 170.
    Y. Zhao, A. Wang, L. Zhu, W. Lv, J. Xu, S. Li, and J. Wang, Opt. Lett. 42, 4699 (2017).ADSCrossRefGoogle Scholar
  171. 171.
    A. Wang, L. Zhu, Y. Zhao, S. Li, W. Lv, J. Xu, and J. Wang, Opt. Express 26, 8669 (2018).ADSCrossRefGoogle Scholar
  172. 172.
    Y. Zhao, C. Cai, J. Zhang, X. Cao, L. Wang, S. Li, and J. Wang, Opt. Express 26, 16102 (2018).ADSCrossRefGoogle Scholar
  173. 173.
    M. Uchida, and A. Tonomura, Nature 464, 737 (2010).ADSCrossRefGoogle Scholar
  174. 174.
    J. Verbeeck, H. Tian, and P. Schattschneider, Nature 467, 301 (2010).ADSCrossRefGoogle Scholar
  175. 175.
    B. J. McMorran, A. Agrawal, I. M. Anderson, A. A. Herzing, H. J. Lezec, J. J. McClelland, and J. Unguris, Science 331, 192 (2011).ADSCrossRefGoogle Scholar
  176. 176.
    S. Sasaki, and I. McNulty, Phys. Rev. Lett. 100, 124801 (2008).ADSCrossRefGoogle Scholar
  177. 177.
    L. Marrucci, C. Manzo, and D. Paparo, Phys. Rev. Lett. 96, 163905 (2006). arXiv: 0712.0099.ADSCrossRefGoogle Scholar
  178. 178.
    F. Tamburini, E. Mari, A. Sponselli, B. Thidé, A. Bianchini, and F. Romanato, New J. Phys. 14, 033001 (2012). arXiv: 1107.2348.ADSCrossRefGoogle Scholar
  179. 179.
    B. Thidé, H. Then, J. Sjöholm, K. Palmer, J. Bergman, T. D. Carozzi, Y. N. Istomin, N. H. Ibragimov, and R. Khamitova, Phys. Rev. Lett. 99, 087701 (2007). arXiv: 0705.1208.ADSCrossRefGoogle Scholar
  180. 180.
    G. A. Turnbull, D. A. Robertson, G. M. Smith, L. Allen, and M. J. Padgett, Opt. Commun. 127, 183 (1996).ADSCrossRefGoogle Scholar
  181. 181.
    Y. Yan, G. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, and A. E. Willner, Nat. Commun. 5, 4876 (2014).ADSCrossRefGoogle Scholar
  182. 182.
    L. Zhu, X. Wei, J. Wang, Z. Zhang, Z. Li, H. Zhang, S. Li, K. Wang, and J. Liu, in Experimental Demonstration of Basic Functionalities for 0.1-THz Orbital Angular Momentum (OAM) Communications: Proceeding of OFC (IEEE, San Francisco, 2014), paper M3K.7.CrossRefGoogle Scholar
  183. 183.
    J. Geng, Adv. Opt. Photon. 3, 128 (2011).CrossRefGoogle Scholar
  184. 184.
    H. Rubinsztein-Dunlop, A. Forbes, M. V. Berry, M. R. Dennis, D. L. Andrews, M. Mansuripur, C. Denz, C. Alpmann, P. Banzer, T. Bauer, E. Karimi, L. Marrucci, M. Padgett, M. Ritsch-Marte, N. M. Litch-initser, N. P. Bigelow, C. Rosales-Guzmán, A. Belmonte, J. P. Torres, T. W. Neely, M. Baker, R. Gordon, A. B. Stilgoe, J. Romero, A. G. White, R. Fickler, A. E. Willner, G. Xie, B. McMorran, and A. M. Weiner, J. Opt. 19, 013001 (2017). arXiv: 1612.06474.ADSCrossRefGoogle Scholar
  185. 185.
    R. Won, Nat. Photon. 11, 619 (2017).ADSCrossRefGoogle Scholar
  186. 186.
    J. Du, and J. Wang, Opt. Lett. 40, 4827 (2015).ADSCrossRefGoogle Scholar
  187. 187.
    L. Zhu, and J. Wang, Opt. Lett. 40, 5463 (2015).ADSCrossRefGoogle Scholar
  188. 188.
    S. Chen, S. Li, Y. Zhao, J. Liu, L. Zhu, A. Wang, J. Du, L. Shen, and J. Wang, Opt. Lett. 41, 4680 (2016).ADSCrossRefGoogle Scholar
  189. 189.
    S. Li, and J. Wang, Sci. Rep. 7, 43233 (2017).ADSCrossRefGoogle Scholar
  190. 190.
    Q. Zhan, Adv. Opt. Photon. 1, 1 (2009).CrossRefGoogle Scholar
  191. 191.
    G. Milione, M. P. J. Lavery, H. Huang, Y. Ren, G. Xie, T. A. Nguyen, E. Karimi, L. Marrucci, D. A. Nolan, R. R. Alfano, and A. E. Willner, Opt. Lett. 40, 1980 (2015). arXiv: 1412.2717.ADSCrossRefGoogle Scholar
  192. 192.
    Y. Zhao, and J. Wang, Opt. Lett. 40, 4843 (2015).ADSCrossRefGoogle Scholar
  193. 193.
    J. Liu, S. M. Li, L. Zhu, A. D. Wang, S. Chen, C. Klitis, C. Du, Q. Mo, M. Sorel, S. Y. Yu, X. L. Cai, and J. Wang, Light Sci. Appl. 7, 17148 (2017).CrossRefGoogle Scholar
  194. 194.
    L. Fang, and J. Wang, Opt. Express 26, 15124 (2018).ADSCrossRefGoogle Scholar
  195. 195.
    E. Ip, G. Milione, M. J. Li, N. Cvijetic, K. Kanonakis, J. Stone, G. Peng, X. Prieto, C. Montero, V. Moreno, and J. Liñares, Opt. Express 23, 17120 (2015).ADSCrossRefGoogle Scholar
  196. 196.
    L. Wang, J. Ai, L. Zhu, A. Wang, S. Fu, C. Du, Q. Mo, and J. Wang, Opt. Express 25, 22991 (2017).ADSCrossRefGoogle Scholar
  197. 197.
    S. Chen, and J. Wang, Opt. Express 26, 18773 (2018).ADSCrossRefGoogle Scholar
  198. 198.
    S. Chen, and J. Wang, Opt. Lett. 43, 3718 (2018).ADSCrossRefGoogle Scholar
  199. 199.
    J. Wang, M. J. Padgett, S. Ramachandran, M. P. J. Lavery, H. Huang, Y. Yue, Y. Yan, N. Bozinovic, S. E. Golowich, and A. E. Willner, in Multimode Communications Using Orbital Angular Momentum, in Optical Fiber Telecommunications VI B, 6th ed., edited by I. P. Kaminow, T. Li, and A. E. Willner (Academic Press, San Diego, 2013), pp. 569–615.Google Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic InformationHuazhong University of Science and TechnologyWuhanChina

Personalised recommendations