Advertisement

Interpretation of the DAMPE 1.4 TeV peak according to the decaying dark matter model

  • Xu Pan
  • Cun Zhang
  • Lei Feng
Article
  • 2 Downloads

Abstract

Highly accurate measurements of cosmic ray electron flux by the dark matter particle explorer (DAMPE) ranging between 25 GeV and 4.6 TeV have recently been published. A sharp peak structure was found at ~ 1.4 TeV. This unexpected peak structure can be reproduced by the annihilation/decay of a nearby dark matter (DM) halo. In this study, we adopt the decaying-DM model to interpret the ~ 1.4 TeV peak. We found that the decay products of the local DM subhalo could contribute to the DMAPE peak with mDM = 3 TeV and τ ~ 1028 s. We also obtain constraints on DM lifetime and the distance of the local DM subhalo by comparison with DAMPE data.

Keywords

dark matter cosmic ray DAMPE 

References

  1. 1.
    P. A. R. Ade, et al. (Planck Collaboration), Astron. Astrophys. 594, A13 (2016), arXiv: 1502. 01589.CrossRefGoogle Scholar
  2. 2.
    G. Bertone, Particle Dark Matter Observations, Models and Searches (Academic, Cambridge, 2010), p. 121.CrossRefMATHGoogle Scholar
  3. 3.
    G. Bertone, D. Hooper, and J. Silk, Phys. Rep. 405, 279 (2005).ADSCrossRefGoogle Scholar
  4. 4.
    M. S. Turner, and F. Wilczek, Phys. Rev. D 42, 1001 (1990).ADSCrossRefGoogle Scholar
  5. 5.
    J. L. Feng, Annu. Rev. Astron. Astrophys. 48, 495 (2010), arXiv: 1003. 0904.ADSCrossRefGoogle Scholar
  6. 6.
    Y. Z. Fan, B. Zhang, and J. Chang, Int. J. Mod. Phys. D 19, 2011 (2010), arXiv: 1008. 4646.ADSCrossRefGoogle Scholar
  7. 7.
    M. Ackermann, et al. (Fermi–LAT Collaboration), Phys. Rev. D 82, 092003 (2010), arXiv: 1008. 5119.ADSCrossRefGoogle Scholar
  8. 8.
    G. Ambrosi, et al. (DAMPE Collaboration), Nature 552, 63 (2017), arXiv: 1711. 10981.ADSGoogle Scholar
  9. 9.
    C. Yue, J. Zang, T. Dong, X. Li, Z. Zhang, S. Zimmer, W. Jiang, Y. Zhang, and D. Wei, Nucl. Instrum. Methods Phys. Res. Sect. A 856, 11 (2017), arXiv: 1703. 02821.ADSCrossRefGoogle Scholar
  10. 10.
    Z. Zhang, C. Wang, J. Dong, Y. Wei, S. Wen, Y. Zhang, Z. Li, C. Feng, S. Gao, Z. T. Shen, D. Zhang, J. Zhang, Q. Wang, S. Y. Ma, D. Yang, D. Jiang, D. Chen, Y. Hu, G. Huang, X. Wang, Z. Xu, S. Liu, Q. An, and Y. Gong, Nucl. Instrum. Methods Phys. Res. Sect. A 836, 98 (2016), arXiv: 1602. 07015.ADSCrossRefGoogle Scholar
  11. 11.
    F. Aharonian, et al. (H ESS Collaboration), Phys. Rev. Lett. 101, 261104 (2008), arXiv: 0811. 3894.ADSCrossRefGoogle Scholar
  12. 12.
    Q. Yuan, L. Feng, P. F. Yin, Y. Z. Fan, X. J. Bi, M. Y. Cui, T.–K. Dong, Y.–Q. Guo, K. Fang, H.–B. Hu, X. Huang, S.–J. Lei, X. Li, S.–J. Lin, H. Liu, P.–X. Ma, W.–X. Peng, R. Qiao, Z.–Q. Shen, M. Su, Y.–F. Wei, Z.–L. Xu, C. Yue, J.–J. Zang, C. Zhang, X. Zhang, Y.–P. Zhang, Y.–J. Zhang, and Y.–L. Zhang, arXiv: 1711. 10989.Google Scholar
  13. 13.
    A. Fowlie, Phys. Lett. B 780, 181 (2018), arXiv: 1712. 05089.ADSCrossRefGoogle Scholar
  14. 14.
    H. B. Jin, B. Yue, X. Zhang, and X. L. Chen, arXiv: 1712. 00362.Google Scholar
  15. 15.
    L. Zu, C. Zhang, L. Feng, Q. Yuan, and Y. Z. Fan, arXiv: 1711. 11052.Google Scholar
  16. 16.
    Y. Z. Fan, W. C. Huang, M. Spinrath, Y. L. S. Tsai, and Q. Yuan, Phys. Lett. B 781, 83 (2018), arXiv: 1711. 10995.ADSCrossRefGoogle Scholar
  17. 17.
    P. H. Gu, and X. G. He, Phys. Lett. B 778, 292 (2018), arXiv: 1711. 11000.ADSCrossRefGoogle Scholar
  18. 18.
    G. H. Duan, L. Feng, F. Wang, L. Wu, J. M. Yang, and R. Zheng, J. High Energ. Phys. 2018, 107 (2018), arXiv: 1711. 11012.CrossRefGoogle Scholar
  19. 19.
    Y. L. Tang, L. Wu, M. Zhang, and R. Zheng, arXiv: 1711. 11058.Google Scholar
  20. 20.
    W. Chao, and Q. Yuan, arXiv: 1711. 11182.Google Scholar
  21. 21.
    P. H. Gu, arXiv: 1711. 11333.Google Scholar
  22. 22.
    P. Athron, C. Balazs, A. Fowlie, and Y. Zhang, J. High Energ. Phys. 2018, 121 (2018), arXiv: 1711. 11376.CrossRefGoogle Scholar
  23. 23.
    J. Cao, L. Feng, X. Guo, L. Shang, F. Wang, and P. Wu, arXiv: 1711. 11452.Google Scholar
  24. 24.
    G. H. Duan, X. G. He, L. Wu, and J. M. Yang, Eur. Phys. J. C 78, 323 (2018), arXiv: 1711. 11563.ADSCrossRefGoogle Scholar
  25. 25.
    X. Liu, and Z. Liu, arXiv: 1711. 11579.Google Scholar
  26. 26.
    X. J. Huang, Y. L. Wu, W. H. Zhang, and Y. F. Zhou, arXiv: 1712. 00005.Google Scholar
  27. 27.
    W. Chao, H. K. Guo, H. L. Li, and J. Shu, arXiv: 1712. 00037.Google Scholar
  28. 28.
    Y. Gao, and Y. Z. Ma, arXiv: 1712. 00370.Google Scholar
  29. 29.
    J. S. Niu, T. Li, R. Ding, B. Zhu, H. F. Xue, and Y. Wang, Phys. Rev. D 97, 083012 (2018), arXiv: 1712. 00372.ADSCrossRefGoogle Scholar
  30. 30.
    C. H. Chen, C. W. Chiang, and T. Nomura, Phys. Rev. D 97, 061302 (2018), arXiv: 1712. 00793.ADSCrossRefGoogle Scholar
  31. 31.
    T. Li, N. Okada, and Q. Shafi, Phys. Lett. B 779, 130 (2018), arXiv: 1712. 00869.ADSCrossRefGoogle Scholar
  32. 32.
    R. Zhu, and Y. Zhang, arXiv: 1712. 01143.Google Scholar
  33. 33.
    P. H. Gu, arXiv: 1712. 00922.Google Scholar
  34. 34.
    T. Nomura, and H. Okada, arXiv: 1712. 00941.Google Scholar
  35. 35.
    K. Ghorbani, and P. H. Ghorbani, arXiv: 1712. 01239.Google Scholar
  36. 36.
    J. Cao, L. Feng, X. Guo, L. Shang, F. Wang, P. Wu, and L. Zu, Eur. Phys. J. C 78, 198 (2018), arXiv: 1712. 01244.ADSCrossRefGoogle Scholar
  37. 37.
    F. Yang, and M. Su, arXiv: 1712. 01724.Google Scholar
  38. 38.
    R. Ding, Z. L. Han, L. Feng, and B. Zhu, arXiv: 1712. 02021.Google Scholar
  39. 39.
    G. Liu, F. Wang, W. Wang, and J. M. Yang, Chin. Phys. C 42, 035101 (2018), arXiv: 1712. 02381.ADSCrossRefGoogle Scholar
  40. 40.
    S. F. Ge, H. J. He, and Y. C. Wang, Phys. Lett. B 781, 88 (2018), arXiv: 1712. 02744.ADSCrossRefGoogle Scholar
  41. 41.
    Y. Zhao, K. Fang, M. Su, and M. C. Miller, arXiv: 1712. 03210.Google Scholar
  42. 42.
    Y. Sui, and Y. Zhang, Phys. Rev. D 97, 095002 (2018), arXiv: 1712. 03642.ADSCrossRefGoogle Scholar
  43. 43.
    N. Okada, and O. Seto, arXiv: 1712. 03652.Google Scholar
  44. 44.
    J. Cao, X. Guo, L. Shang, F. Wang, P. Wu, and L. Zu, Phys. Rev. D 97, 063016(2018), arXiv: 1712. 05351.ADSCrossRefGoogle Scholar
  45. 45.
    Z. L. Han, W. Wang, and R. Ding, Eur. Phys. J. C 78, 216 (2018), arXiv: 1712. 05722.ADSCrossRefGoogle Scholar
  46. 46.
    J. S. Niu, T. Li, and F. Z. Xu, arXiv: 1712. 09586.Google Scholar
  47. 47.
    T. Nomura, H. Okada, and P. Wu, arXiv: 1801. 04729.Google Scholar
  48. 48.
    A. W. Strong, I. V. Moskalenko, and V. S. Ptuskin, Annu. Rev. Nucl. Part. Sci. 57, 285 (2007).ADSCrossRefGoogle Scholar
  49. 49.
    E. S. Seo, and V. S. Ptuskin, Astrophys. J. 431, 705 (1994).ADSCrossRefGoogle Scholar
  50. 50.
    A. W. Strong, and I. V. Moskalenko, Astrophys. J. 509, 212 (1998).ADSCrossRefGoogle Scholar
  51. 51.
    C. Evoli, D. Gaggero, D. Grasso, and L. Maccione, J. Cosmol. Astropart. Phys. 2008, 018 (2008), arXiv: 0807. 4730.CrossRefGoogle Scholar
  52. 52.
    X. Huang, Y. L. S. Tsai, and Q. Yuan, Comput. Phys. Commun. 213, 252 (2017), arXiv: 1603. 07119.ADSCrossRefGoogle Scholar
  53. 53.
    M. Aguilar, et al. (AMS Collaboration), Phys. Rev. Lett. 110, 141102 (2013).ADSCrossRefGoogle Scholar
  54. 54.
    L. Feng, Q. Yuan, X. Li, and Y. Z. Fan, Phys. Lett. B 720, 1 (2013), arXiv: 1206. 4758.ADSCrossRefGoogle Scholar
  55. 55.
    L. Bergström, T. Bringmann, I. Cholis, D. Hooper, and C. Weniger, Phys. Rev. Lett. 111, 171101 (2013), arXiv: 1306. 3983.ADSCrossRefGoogle Scholar
  56. 56.
    H. B. Jin, Y. L. Wu, and Y. F. Zhou, J. Cosmol. Astropart. Phys. 2015, 049 (2015), arXiv: 1410. 0171.CrossRefGoogle Scholar
  57. 57.
    Q. Yuan, S. J. Lin, K. Fang, and X. J. Bi, Phys. Rev. D 95, 083007 (2017), arXiv: 1701. 06149.ADSCrossRefGoogle Scholar
  58. 58.
    L. Feng, R. Z. Yang, H. N. He, T. K. Dong, Y. Z. Fan, and J. Chang, Phys. Lett. B 728, 250 (2014), arXiv: 1303. 0530.ADSCrossRefGoogle Scholar
  59. 59.
    N. Kawanaka, K. Ioka, and M. M. Nojiri, Astrophys. J. 710, 958 (2010), arXiv: 0903. 3782.ADSCrossRefGoogle Scholar
  60. 60.
    P. D. Serpico, Astropart. Phys. 39–40, 2 (2012), arXiv: 1108. 4827.Google Scholar
  61. 61.
    I. V. Moskalenko, A. W. Strong, J. F. Ormes, and M. S. Potgieter, Astrophys. J. 565, 280 (2002).ADSCrossRefGoogle Scholar
  62. 62.
    A. Strong, and J. Mattox, Astron. Astrophys. 308, L21 (1996).ADSGoogle Scholar
  63. 63.
    R. Blandford, and D. Eichler, Phys. Rep. 154, 1 (1987).ADSCrossRefGoogle Scholar
  64. 64.
    D. Maurin, F. Donato, R. Taillet, and P. Salati, Astrophys. J. 555, 585 (2001).ADSCrossRefGoogle Scholar
  65. 65.
    S. P. Swordy, D. Mueller, P. Meyer, J. L'Heureux, and J. M. Grunsfeld, Astrophys. J. 349, 625 (1990).ADSCrossRefGoogle Scholar
  66. 66.
    J. F. Navarro, C. S. Frenk, and S. D. M. White, Astrophys. J. 490, 493 (1997).ADSCrossRefGoogle Scholar
  67. 67.
    J. Einasto, arXiv: 0901. 0632.Google Scholar
  68. 68.
    L. Bergstrom, P. Ullio, and J. Buckley, Astropart. Phys. 9, 44 (1997).Google Scholar
  69. 69.
    B. Moore, S. Ghigna, F. Governato, G. Lake, T. Quinn, J. Stadel, and P. Tozzi, Astrophys. J. 524, L19 (1999).ADSCrossRefGoogle Scholar
  70. 70.
    A. M. Atoyan, F. A. Aharonian, and H. J. Volk, Phys. Rev. D 52, 3265 (1995).ADSCrossRefGoogle Scholar
  71. 71.
    V. Springel, J. Wang, M. Vogelsberger, A. Ludlow, A. Jenkins, A. Helmi, J. F. Navarro, C. S. Frenk, and S. D. M. White, Mon. Not. R. Astron. Soc. 391, 1685 (2008), arXiv: 0809. 0898.ADSCrossRefGoogle Scholar
  72. 72.
    M. Aguilar, et al. (AMS Collaboration), Phys. Rev. Lett. 113, 221102 (2014).ADSCrossRefGoogle Scholar
  73. 73.
    T. Kamae, N. Karlsson, T. Mizuno, T. Abe, and T. Koi, Astrophys. J. 647, 692 (2006).ADSCrossRefGoogle Scholar
  74. 74.
    L. Bergström, T. Bringmann, M. Eriksson, and M. Gustafsson, Phys. Rev. Lett. 94, 131301 (2005).ADSCrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory of Dark Matter and Space Astronomy; Purple Mountain ObservatoryChinese Academy of SciencesNanjingChina
  2. 2.School of PhysicsNanjing UniversityNanjingChina

Personalised recommendations