Structural phase transition, antiferromagnetism and two superconducting domes in LaFeAsO1-xFx (0 < x ≤ 0.75)

  • Jie YangEmail author
  • Toshihide Oka
  • Zheng Li
  • HuaiXin Yang
  • JianQi Li
  • GenFu Chen
  • Guo-Qing ZhengEmail author


We report 75As nuclear magnetic resonance (NMR)/nuclear quadrupole resonance (NQR) and transmission electron microscopy (TEM) studies on LaFeAsO1−xFx. There are two superconducting domes in this material. The first one appears at 0.03 ≤ x ≤ 0.2 with T c max = 27 K, and the second one at 0.25 ≤ x ≤ 0.75 with T c max = 30 K. By NMR and TEM, we demonstrate that a C4-to-C2 structural phase transition (SPT) takes place above both domes, with the transition temperature Ts varying strongly with x. In the first dome, the SPT is followed by an antiferromagnetic (AF) transition, but neither AF order nor low-energy spin fluctuations are found in the second dome. By 75As nuclear spin-lattice relaxation rate (1/T1) measurements, we find that AF order and superconductivity coexist microscopically in LaFeAsO0.97F0.03. In the coexisting region, 1/T1 decreases at Tc but becomes proportional to T below 0.6Tc, indicating gapless excitations. Therefore, in contrast to the early reports, the obtained phase diagram for x ≤ 0.2 is quite similar to the doped BaFe2As2 system. The electrical resistivity ρ in the second dome can be fitted by ρ = ρ0 + ATn with n = 1 and a maximal coefficient A at around xopt = 0.5-0.55 at which Ts extrapolates to zero and Tc is the maximal, which suggests the importance of quantum critical fluctuations associated with the SPT. We have constructed a complete phase diagram of LaFeAsO1−xFx, which provides insight into the relationship between SPT, antiferromagnetism and superconductivity.


nuclear magnetic resonance antiferromagnetism superconductivity structural phase transition 


  1. 1.
    G. R. Stewart, Rev. Mod. Phys. 83, 1589 (2011), arXiv: 1106.1618.ADSCrossRefGoogle Scholar
  2. 2.
    Z. A. Ren, W. Lu, J. Yang, W. Yi, X. L. Shen, Z. C. Li, G. C. Che, X. L. Dong, L. L. Sun, F. Zhou, and Z. X. Zhao, Chin. Phys. Lett. 25, 2215 (2008).ADSCrossRefGoogle Scholar
  3. 3.
    Q. Y. Wang, Z. Li, W. H. Zhang, Z. C. Zhang, J. S. Zhang, W. Li, H. Ding, Y. B. Ou, P. Deng, K. Chang, J. Wen, C. L. Song, K. He, J. F. Jia, S. H. Ji, Y. Y. Wang, L. L. Wang, X. Chen, X. C. Ma, and Q. K. Xue, Chin. Phys. Lett. 29, 037402 (2012), arXiv: 1201.5694.ADSCrossRefGoogle Scholar
  4. 4.
    L. Boeri, O. V. Dolgov, and A. A. Golubov, Phys. Rev. Lett. 101, 026403 (2008), arXiv: 0803.2703.ADSCrossRefGoogle Scholar
  5. 5.
    I. I. Mazin, D. J. Singh, M. D. Johannes, and M. H. Du, Phys. Rev. Lett. 101, 057003 (2008), arXiv: 0803.2740.ADSCrossRefGoogle Scholar
  6. 6.
    K. Kuroki, S. Onari, R. Arita, H. Usui, Y. Tanaka, H. Kontani, and H. Aoki, Phys. Rev. Lett. 101, 087004 (2008), arXiv: 0803.3325.ADSCrossRefGoogle Scholar
  7. 7.
    Y. Kamihara, T. Watanabe, M. Hirano, and H. Hosono, J. Am. Chem. Soc. 130, 3296 (2008).CrossRefGoogle Scholar
  8. 8.
    M. Rotter, M. Tegel, and D. Johrendt, Phys. Rev. Lett. 101, 107006 (2008), arXiv: 0805.4630.ADSCrossRefGoogle Scholar
  9. 9.
    X. C. Wang, Q. Q. Liu, Y. X. Lv, W. B. Gao, L. X. Yang, R. C. Yu, F. Y. Li, and C. Q. Jin, Solid State Commun. 148, 538 (2008), arXiv: 0806.4688.ADSCrossRefGoogle Scholar
  10. 10.
    F. C. Hsu, J. Y. Luo, K. W. Yeh, T. K. Chen, T. W. Huang, P. M. Wu, Y. C. Lee, Y. L. Huang, Y. Y. Chu, D. C. Yan, and M. K. Wu, Proc. Natl. Acad. Sci. USA 105, 14262 (2008).ADSCrossRefGoogle Scholar
  11. 11.
    J. C. S. Davis, and D. H. Lee, Proc. Natl. Acad. Sci. USA 110, 17623 (2013), arXiv: 1309.2719.ADSCrossRefGoogle Scholar
  12. 12.
    G. G. Lonzarich, N. D. Mathur, F. M. Grosche, S. R. Julian, I. R. Walker, D. M. Freye, and R. K. W. Haselwimmer, Nature 394, 39 (1998).ADSCrossRefGoogle Scholar
  13. 13.
    P. A. Lee, N. Nagaosa, and X. G. Wen, Rev. Mod. Phys. 78, 17 (2006).ADSCrossRefGoogle Scholar
  14. 14.
    R. M. Fernandes, A. V. Chubukov, and J. Schmalian, Nat. Phys. 10, 97 (2014).CrossRefGoogle Scholar
  15. 15.
    J. H. Chu, J. G. Analytis, K. De Greve, P. L. McMahon, Z. Islam, Y. Yamamoto, and I. R. Fisher, Science 329, 824 (2010).ADSCrossRefGoogle Scholar
  16. 16.
    X. Lu, J. T. Park, R. Zhang, H. Luo, A. H. Nevidomskyy, Q. Si, and P. Dai, Science 345, 657 (2014), arXiv: 1408.2756.ADSCrossRefGoogle Scholar
  17. 17.
    R. Zhou, L. Y. Xing, X. C. Wang, C. Q. Jin, and G. Zheng, Phys. Rev. B 93, 060502(R) (2016), arXiv: 1601.05293.ADSCrossRefGoogle Scholar
  18. 18.
    S. Kasahara, H. J. Shi, K. Hashimoto, S. Tonegawa, Y. Mizukami, T. Shibauchi, K. Sugimoto, T. Fukuda, T. Terashima, A. H. Nevidomskyy, and Y. Matsuda, Nature 486, 382 (2012).ADSCrossRefGoogle Scholar
  19. 19.
    M. Yi, D. Lu, J. H. Chu, J. G. Analytis, A. P. Sorini, A. F. Kemper, B. Moritz, S. K. Mo, R. G. Moore, M. Hashimoto, W. S. Lee, Z. Hussain, T. P. Devereaux, I. R. Fisher, and Z. X. Shen, Proc. Natl. Acad. Sci. USA 108, 6878 (2011), arXiv: 1011.0050.ADSCrossRefGoogle Scholar
  20. 20.
    R. Zhou, Z. Li, J. Yang, D. L. Sun, C. T. Lin, and G. Zheng, Nat. Commun. 4, 2265 (2013), arXiv: 1308.3539.ADSCrossRefGoogle Scholar
  21. 21.
    H. H. Kuo, J. H. Chu, J. C. Palmstrom, S. A. Kivelson, and I. R. Fisher, Science 352, 958 (2016), arXiv: 1503.00402.ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    R. M. Fernandes, A. E. Böhmer, C. Meingast, and J. Schmalian, Phys. Rev. Lett. 111, 137001 (2013), arXiv: 1306.0521.ADSCrossRefGoogle Scholar
  23. 23.
    S. Onari, and H. Kontani, Phys. Rev. Lett. 109, 137001 (2012), arXiv: 1203.2874.ADSCrossRefGoogle Scholar
  24. 24.
    C. C. Chen, J. Maciejko, A. P. Sorini, B. Moritz, R. R. P. Singh, and T. P. Devereaux, Phys. Rev. B 82, 100504 (2010), arXiv: 1004.4611.ADSCrossRefGoogle Scholar
  25. 25.
    C. C. Lee, W. G. Yin, and W. Ku, Phys. Rev. Lett. 103, 267001 (2009), arXiv: 0905.2957.ADSCrossRefGoogle Scholar
  26. 26.
    W. Lv, J. Wu, and P. Phillips, Phys. Rev. B 80, 224506 (2009), arXiv: 0905.1704.ADSCrossRefGoogle Scholar
  27. 27.
    F. L. Ning, K. Ahilan, T. Imai, A. S. Sefat, M. A. McGuire, B. C. Sales, D. Mandrus, P. Cheng, B. Shen, and H. H. Wen, Phys. Rev. Lett. 104, 037001 (2010), arXiv: 0907.3875.ADSCrossRefGoogle Scholar
  28. 28.
    Z. Li, D. L. Sun, C. T. Lin, Y. H. Su, J. P. Hu, and G. Zheng, Phys. Rev. B 83, 140506(R) (2011), arXiv: 1102.4417.ADSCrossRefGoogle Scholar
  29. 29.
    Y. Nakai, T. Iye, S. Kitagawa, K. Ishida, H. Ikeda, S. Kasahara, H. Shishido, T. Shibauchi, Y. Matsuda, and T. Terashima, Phys. Rev. Lett. 105, 107003 (2010), arXiv: 1005.2853.ADSCrossRefGoogle Scholar
  30. 30.
    T. Oka, Z. Li, S. Kawasaki, G. F. Chen, N. L. Wang, and G. Zheng, Phys. Rev. Lett. 108, 047001 (2012), arXiv: 1107.2711.ADSCrossRefGoogle Scholar
  31. 31.
    H. Luetkens, H. H. Klauss, M. Kraken, F. J. Litterst, T. Dellmann, R. Klingeler, C. Hess, R. Khasanov, A. Amato, C. Baines, M. Kosmala, O. J. Schumann, M. Braden, J. Hamann-Borrero, N. Leps, A. Kondrat, G. Behr, J. Werner, and B. Büchner, Nat. Mater. 8, 305 (2009), arXiv: 0806.3533.ADSCrossRefGoogle Scholar
  32. 32.
    Q. Huang, J. Zhao, J. W. Lynn, G. F. Chen, J. L. Luo, N. L. Wang, and P. Dai, Phys. Rev. B 78, 054529 (2008), arXiv: 0809.4816.ADSCrossRefGoogle Scholar
  33. 33.
    F. Hammerath, U. Grafe, T. Kühne, H. Kühne, P. L. Kuhns, A. P. Reyes, G. Lang, S. Wurmehl, B. Büchner, P. Carretta, and H. J. Grafe, Phys. Rev. B 88, 104503 (2013), arXiv: 1307.3138.ADSCrossRefGoogle Scholar
  34. 34.
    G. Lang, L. Veyrat, U. Grafe, F. Hammerath, D. Paar, G. Behr, S. Wurmehl, and H. J. Grafe, Phys. Rev. B 94, 014514 (2016), arXiv: 1508.06532.ADSCrossRefGoogle Scholar
  35. 35.
    N. Fujiwara, T. Nakano, Y. Kamihara, and H. Hosono, Phys. Rev. B 85, 094501 (2012), arXiv: 1202.5367.ADSCrossRefGoogle Scholar
  36. 36.
    M. Hiraishi, R. Kadono, M. Miyazaki, I. Yamauchi, A. Koda, K. M. Kojima, M. Ishikado, S. Wakimoto, and S. Shamoto, J. Phys. Soc. Jpn. 83, 103707 (2014), arXiv: 1401.7780.ADSCrossRefGoogle Scholar
  37. 37.
    R. Khasanov, S. Sanna, G. Prando, Z. Shermadini, M. Bendele, A. Amato, P. Carretta, R. De Renzi, J. Karpinski, S. Katrych, H. Luetkens, and N. D. Zhigadlo, Phys. Rev. B 84,100501(R) (2011), arXiv: 1105.1280.ADSCrossRefGoogle Scholar
  38. 38.
    J. Zhao, Q. Huang, C. de la Cruz, S. Li, J. W. Lynn, Y. Chen, M. A. Green, G. F. Chen, G. Li, Z. Li, J. L. Luo, N. L. Wang, and P. Dai, Nat. Mater. 7, 953 (2008), arXiv: 0806.2528.ADSCrossRefGoogle Scholar
  39. 39.
    A. J. Drew, C. Niedermayer, P. J. Baker, F. L. Pratt, S. J. Blundell, T. Lancaster, R. H. Liu, G. Wu, X. H. Chen, I. Watanabe, V. K. Malik, A. Dubroka, M. Rossle, K. W. Kim, C. Baines, and C. Bernhard, Nat. Mater. 8, 310 (2009), arXiv: 0807.4876.ADSCrossRefGoogle Scholar
  40. 40.
    K. Hashimoto, K. Cho, T. Shibauchi, S. Kasahara, Y. Mizukami, R. Katsumata, Y. Tsuruhara, T. Terashima, H. Ikeda, M. A. Tanatar, H. Kitano, N. Salovich, R. W. Giannetta, P. Walmsley, A. Carrington, R. Prozorov, and Y. Matsuda, Science 336, 1554 (2012), arXiv: 1212.5632.ADSCrossRefGoogle Scholar
  41. 41.
    Y. Laplace, J. Bobroff, F. Rullier-Albenque, D. Colson, and A. Forget, Phys. Rev. B 80, 140501(R) (2009), arXiv: 0906.2125.ADSCrossRefGoogle Scholar
  42. 42.
    Z. Li, R. Zhou, Y. Liu, D. L. Sun, J. Yang, C. T. Lin, and G. Zheng, Phys. Rev. B 86, 180501(R) (2012), arXiv: 1204.2434.ADSCrossRefGoogle Scholar
  43. 43.
    J. Yang, R. Zhou, L. L. Wei, H. X. Yang, J. Q. Li, Z. X. Zhao, and G. Q. Zheng, Chin. Phys. Lett. 32, 107401 (2015), arXiv: 1507.01750.ADSCrossRefGoogle Scholar
  44. 44.
    G. F. Chen, Z. Li, G. Li, J. Zhou, D. Wu, J. Dong, W. Z. Hu, P. Zheng, Z. J. Chen, H. Q. Yuan, J. Singleton, J. L. Luo, and N. L. Wang, Phys. Rev. Lett. 101, 057007 (2008), arXiv: 0803.0128.ADSCrossRefGoogle Scholar
  45. 45.
    A. Narath, Phys. Rev. 162, 320 (1967).ADSCrossRefGoogle Scholar
  46. 46.
    G. Lang, H. J. Grafe, D. Paar, F. Hammerath, K. Manthey, G. Behr, J. Werner, and B. Büchner, Phys. Rev. Lett. 104, 097001 (2010), arXiv: 0912.5495.ADSCrossRefGoogle Scholar
  47. 47.
    J. Yang, and G. Zheng, Hyperfine Interact 237, 141 (2016).ADSCrossRefGoogle Scholar
  48. 48.
    A. Abragam, The Principles of Nuclear Magnetism (Oxford University Press, London, 1961).Google Scholar
  49. 49.
    S. Kitagawa, Y. Nakai, T. Iye, K. Ishida, Y. Kamihara, M. Hirano, and H. Hosono, Phys. Rev. B 81, 212502 (2010), arXiv: 1005.2013.ADSCrossRefGoogle Scholar
  50. 50.
    G. Zheng, N. Yamaguchi, H. Kan, Y. Kitaoka, J. L. Sarrao, P. G. Pagliuso, N. O. Moreno, and J. D. Thompson, Phys. Rev. B 70, 014511 (2004).ADSCrossRefGoogle Scholar
  51. 51.
    K. Kitagawa, N. Katayama, K. Ohgushi, M. Yoshida, and M. Takigawa, J. Phys. Soc. Jpn. 77, 114709 (2008), arXiv: 0807.4613.ADSCrossRefGoogle Scholar
  52. 52.
    C. de la Cruz, Q. Huang, J. W. Lynn, J. Li, W. Ratcliff II, J. L. Zarestky, H. A. Mook, G. F. Chen, J. L. Luo, N. L. Wang, and P. C. Dai, Nature 453, 889 (2008).ADSCrossRefGoogle Scholar
  53. 53.
    N. K. Sato, N. Aso, K. Miyake, R. Shiina, P. Thalmeier, G. Varelogiannis, C. Geibel, F. Steglich, P. Fulde, and T. Komatsubara, Nature 410, 340 (2001).ADSCrossRefGoogle Scholar
  54. 54.
    A. de Visser, N. T. Huy, A. Gasparini, D. E. de Nijs, D. Andreica, C. Baines, and A. Amato, Phys. Rev. Lett. 102, 167003 (2009), arXiv: 0904.0532.ADSCrossRefGoogle Scholar
  55. 55.
    T. Moriya, Spin Fluctuations in Itinerant Magnetism (Springer, Berlin, 1985).CrossRefGoogle Scholar
  56. 56.
    S. Kawasaki, T. Mabuchi, S. Maeda, T. Adachi, T. Mizukami, K. Kudo, M. Nohara, and G. Zheng, Phys. Rev. B 92, 180508(R) (2015), arXiv: 1511.00760.ADSCrossRefGoogle Scholar
  57. 57.
    A. Hinojosa, R. M. Fernandes, and A. V. Chubukov, Phys. Rev. Lett. 113, 167001 (2014), arXiv: 1405.7077.ADSCrossRefGoogle Scholar
  58. 58.
    M. Fu, D. A. Torchetti, T. Imai, F. L. Ning, J. Q. Yan, and A. S. Sefat, Phys. Rev. Lett. 109, 247001 (2012), arXiv: 1208.5652.ADSCrossRefGoogle Scholar
  59. 59.
    J. Dong, H. J. Zhang, G. Xu, Z. Li, G. Li, W. Z. Hu, D. Wu, G. F. Chen, X. Dai, J. L. Luo, Z. Fang, and N. L. Wang, Europhys. Lett. 83, 27006 (2008), arXiv: 0803.3426.ADSCrossRefGoogle Scholar
  60. 60.
    Y. Nakai, S. Kitagawa, K. Ishida, Y. Kamihara, M. Hirano, and H. Hosono, New J. Phys. 11 045004 (2009).ADSCrossRefGoogle Scholar
  61. 61.
    C. Hess, A. Kondrat, A. Narduzzo, J. E. Hamann-Borrero, R. Klingeler, J. Werner, G. Behr, and B. Büchner, Europhys. Lett. 87, 17005 (2009).ADSCrossRefGoogle Scholar
  62. 62.
    T. Moriya, J. Magn. Magn. Mater. 100, 261 (1991).ADSCrossRefGoogle Scholar
  63. 63.
    S. Lederer, Y. Schattner, E. Berg, and S. A. Kivelson, Proc. Natl. Acad. Sci. USA 114, 4905 (2017), arXiv: 1612.01542.ADSCrossRefGoogle Scholar
  64. 64.
    M. Hiraishi, S. Iimura, K. M. Kojima, J. Yamaura, H. Hiraka, K. Ikeda, P. Miao, Y. Ishikawa, S. Torii, M. Miyazaki, I. Yamauchi, A. Koda, K. Ishii, M. Yoshida, J. Mizuki, R. Kadono, R. Kumai, T. Kamiyama, T. Otomo, Y. Murakami, S. Matsuishi, and H. Hosono, Nat. Phys. 10, 300 (2014), arXiv: 1403.6021.CrossRefGoogle Scholar
  65. 65.
    L. Sun, X. J. Chen, J. Guo, P. Gao, Q. Z. Huang, H. Wang, M. Fang, X. Chen, G. Chen, Q. Wu, C. Zhang, D. Gu, X. Dong, L. Wang, K. Yang, A. Li, X. Dai, H. Mao, and Z. Zhao, Nature 483, 67 (2012), arXiv: 1110.2600.ADSCrossRefGoogle Scholar
  66. 66.
    H. Mukuda, F. Engetsu, T. Shiota, K. T. Lai, M. Yashima, Y. Kitaoka, S. Miyasaka, and S. Tajima, J. Phys. Soc. Jpn. 83, 083702 (2014), arXiv: 1407.7651.ADSCrossRefGoogle Scholar
  67. 67.
    C. L. Song, H. M. Zhang, Y. Zhong, X. P. Hu, S. H. Ji, L. Wang, K. He, X. C. Ma, and Q. K. Xue, Phys. Rev. Lett. 116, 157001 (2016), arXiv: 1511.02007.ADSCrossRefGoogle Scholar
  68. 68.
    J. Guo, X. J. Chen, J. Dai, C. Zhang, J. Guo, X. Chen, Q. Wu, D. Gu, P. Gao, L. Yang, K. Yang, X. Dai, H. Mao, L. Sun, and Z. Zhao, Phys. Rev. Lett. 108, 197001 (2012).ADSCrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of PhysicsChinese Academy of Sciences and Beijing National Laboratory for Condensed Matter PhysicsBeijingChina
  2. 2.Department of PhysicsOkayama UniversityOkayamaJapan

Personalised recommendations