Advertisement

Dark Matter Particle Explorer observations of high-energy cosmic ray electrons plus positrons and their physical implications

  • Qiang Yuan
  • Lei Feng
Invited Review

Abstract

The DArk Matter Particle Explorer (DAMPE) is a satellite-borne, high-energy particle and -ray detector, which is dedicated to indirectly detecting particle dark matter and studying high-energy astrophysics. The first results about precise measurement of the cosmic ray electron plus positron spectrum between 25 GeV and 4.6 TeV were published recently. The DAMPE spectrum reveals an interesting spectral softening arount 0:9 TeV and a tentative peak around 1:4 TeV. These results have inspired extensive discussion. The detector of DAMPE, the data analysis, and the first results are introduced. In particular, the physical interpretations of the DAMPE data are reviewed.

Keywords

dark matter cosmic rays electrons plus positrons pulsars 

References

  1. 1.
    G. Jungman, M. Kamionkowski, and K. Griest, Phys. Rep. 267, 195 (1996).ADSCrossRefGoogle Scholar
  2. 2.
    G. Bertone, D. Hooper, and J. Silk, Phys. Rep. 405, 279 (2005).ADSCrossRefGoogle Scholar
  3. 3.
    X. J. Bi, P. F. Yin, and Q. Yuan, Front. Phys. 8, 794 (2013), arXiv: 1409. 4590.CrossRefGoogle Scholar
  4. 4.
    P. F. Smith, and J. D. Lewin, Phys. Rep. 187, 203 (1990).ADSCrossRefGoogle Scholar
  5. 5.
    D. S. Akerib, et al. (LUX Collaboration), Phys. Rev. Lett. 118, 021303 (2017), arXiv: 1608. 07648.ADSCrossRefGoogle Scholar
  6. 6.
    E. Aprile, et al. (XENON Collaboration), Phys. Rev. Lett. 119,181301 (2017), arXiv: 1705. 06655.Google Scholar
  7. 7.
    X. Cui, et al. (PandaX Collaboration), Phys. Rev. Lett. 119, 181302 (2017).ADSCrossRefGoogle Scholar
  8. 8.
    J. Chang, et al. (ATIC Collaboration), Nature 456, 362 (2008).ADSCrossRefGoogle Scholar
  9. 9.
    O. Adriani, et al. (PAMELA Collaboration), Nature 458, 607 (2009), arXiv: 0810. 4995.ADSCrossRefGoogle Scholar
  10. 10.
    A. A. Abdo, et al. (Fermi Collaboration), Phys. Rev. Lett. 102, 181101 (2009), arXiv: 0905. 0025.ADSCrossRefGoogle Scholar
  11. 11.
    M. Ackermann, et al. (Fermi Collaboration), Phys. Rev. Lett. 108, 011103 (2012), arXiv: 1109. 0521.ADSCrossRefGoogle Scholar
  12. 12.
    M. Aguilar, et al. (AMS Collaboration), Phys. Rev. Lett. 110, 141102 (2013).ADSCrossRefGoogle Scholar
  13. 13.
    M. Aguilar, et al. (AMS Collaboration), Phys. Rev. Lett. 113, 221102 (2014).ADSCrossRefGoogle Scholar
  14. 14.
    D. Hooper, and L. Goodenough, Phys. Lett. B 697, 412 (2011), arXiv: 1010. 2752.ADSCrossRefGoogle Scholar
  15. 15.
    M. Ackermann, et al. (Fermi Collaboration), Astrophys. J. 840, 43 (2017), arXiv: 1704. 03910.ADSCrossRefGoogle Scholar
  16. 16.
    S. W. Barwick, et al. (HEAT Collaboration), Astrophys. J. 482, L191 (1997).ADSCrossRefGoogle Scholar
  17. 17.
    M. Aguilar, et al. (AMS Collaboration), Phys. Lett. B 646,145 (2007).ADSCrossRefGoogle Scholar
  18. 18.
    O. Adriani, et al. (PAMELA Collaboration), Phys. Rev. Lett. 102, 051101 (2009), arXiv: 0810. 4994.ADSCrossRefGoogle Scholar
  19. 19.
    O. Adriani, et al. (PAMELA Collaboration), Phys. Rev. Lett. 105, 121101 (2010), arXiv: 1007. 0821.ADSCrossRefGoogle Scholar
  20. 20.
    M. Aguilar, et al. (AMS Collaboration), Phys. Rev. Lett. 117, 091103 (2016).ADSCrossRefGoogle Scholar
  21. 21.
    Y. Z. Fan, B. Zhang, and J. Chang, Int. J. Mod. Phys. D 19, 2011 (2010), arXiv: 1008. 4646.ADSCrossRefGoogle Scholar
  22. 22.
    P. D. Serpico, Astropart. Phys. 39–40, 2 (2012), arXiv: 1108. 4827.Google Scholar
  23. 23.
    C. S. Shen, Astrophys. J. 162, L181 (1970).Google Scholar
  24. 24.
    D. Hooper, P. Blasi, and P. D. Serpico, J. Cosmol. Astropart. Phys. 2009, 025 (2009), arXiv: 0810. 1527.CrossRefGoogle Scholar
  25. 25.
    H. Yüksel, M. D. Kistler, and T. Stanev, Phys. Rev. Lett. 103, 051101 (2009), arXiv: 0810. 2784.ADSCrossRefGoogle Scholar
  26. 26.
    L. Bergström, T. Bringmann, and J. Edsjö, Phys. Rev. D 78, 103520 (2008), arXiv: 0808. 3725.ADSCrossRefGoogle Scholar
  27. 27.
    M. Cirelli, M. Kadastik, M. Raidal, and A. Strumia, Nucl. Phys. B 813, 1 (2009), arXiv: 0809. 2409.ADSCrossRefGoogle Scholar
  28. 28.
    P. Yin, Q. Yuan, J. Liu, J. Zhang, X. Bi, S. Zhu, and X. Zhang, Phys. Rev. D 79, 023512 (2009), arXiv: 0811. 0176.ADSCrossRefGoogle Scholar
  29. 29.
    G. Bertone, M. Cirelli, A. Strumia, and M. Taoso, J. Cosmol. Astropart. Phys. 2009, 009 (2009), arXiv: 0811. 3744.CrossRefGoogle Scholar
  30. 30.
    L. Bergstrom, G. Bertone, T. Bringmann, J. Edsjo, and M. Taoso, Phys. Rev. D 79, 081303 (2009), arXiv: 0812. 3895.ADSCrossRefGoogle Scholar
  31. 31.
    M. Papucci, and A. Strumia, J. Cosmol. Astropart. Phys. 2010, 014 (2010), arXiv: 0912. 0742.CrossRefGoogle Scholar
  32. 32.
    M. Cirelli, P. Panci, and P. D. Serpico, Nucl. Phys. B 840, 284 (2010), arXiv: 0912. 0663.ADSCrossRefGoogle Scholar
  33. 33.
    A. U. Abeysekara, et al. (HAWC Collaboration), Science 358, 9 1 1 (2017), arXiv: 1711. 06223.Google Scholar
  34. 34.
    D. Hooper, I. Cholis, T. Linden, and K. Fang, Phys. Rev. D 96, 103013 (2017), arXiv: 1702. 08436.ADSCrossRefGoogle Scholar
  35. 35.
    K. Fang, X. J. Bi, P. F. Yin, and Q. Yuan, arXiv: 1803. 02640.Google Scholar
  36. 36.
    J. Hall, and D. Hooper, Phys. Lett. B 681, 220 (2009), arXiv: 0811. 3362.ADSCrossRefGoogle Scholar
  37. 37.
    D. Malyshev, I. Cholis, and J. Gelfand, Phys. Rev. D 80, 063005 (2009), arXiv: 0903. 1310.ADSCrossRefGoogle Scholar
  38. 38.
    M. Pato, M. Lattanzi, and G. Bertone, J. Cosmol. Astropart. Phys. 2010, 020 (2010), arXiv: 1010. 5236.CrossRefGoogle Scholar
  39. 39.
    P. F. Yin, Z. H. Yu, Q. Yuan, and X. J. Bi, Phys. Rev. D 88, 023001 (2013), arXiv: 1304. 4128.ADSCrossRefGoogle Scholar
  40. 40.
    J. Chang, Chin. J. Space Sci. 34, 550 (2014).Google Scholar
  41. 41.
    J. Chang, et al. (DAMPE Collaboration), Astroparticle Phys. 95, 6 (2017), arXiv: 1706. 08453.ADSCrossRefGoogle Scholar
  42. 42.
    G. Ambrosi, et al. (DAMPE Collaboration), Nature 552, 63 (2017), arXiv: 1711. 10981.ADSGoogle Scholar
  43. 43.
    Y. Yu, Z. Sun, H. Su, Y. Yang, J. Liu, J. Kong, G. Xiao, X. Ma, Y. Zhou, H. Zhao, D. Mo, Y. Zhang, P. Yang, J. Chen, H. Yang, F. Fang, S. Zhang, H. J. Yao, J. Duan, X. Niu, Z. Hu, Z. Wang, X. Wang, J. Zhang, and W. Liu, Astropart. Phys. 94, 1 (2017), arXiv: 1703. 00098.ADSCrossRefGoogle Scholar
  44. 44.
    P. Azzarello, G. Ambrosi, R. Asfandiyarov, P. Bernardini, B. Bertucci, A. Bolognini, F. Cadoux, M. Caprai, I. De Mitri, M. Domenjoz, Y. Dong, M. Duranti, R. Fan, P. Fusco, V. Gallo, F. Gargano, K. Gong, D. Guo, C. Husi, M. Ionica, D. La Marra, F. Loparco, G. Marsella, M. N. Mazziotta, J. Mesa, A. Nardinocchi, L. Nicola, G. Pelleriti, W. Peng, M. Pohl, V. Postolache, R. Qiao, A. Surdo, A. Tykhonov, S. Vitillo, H. Wang, M. Weber, D. Wu, X. Wu, and F. Zhang, Nucl. Instrum. Methods Phys. Res. Sect. A 831, 378 (2016).ADSCrossRefGoogle Scholar
  45. 45.
    Z. Zhang, Y. Zhang, J. Dong, S. Wen, C. Feng, C. Wang, Y. Wei, X. Wang, Z. Xu, and S. Liu, Nucl. Instrum. Methods Phys. Res. Sect. A 780, 21 (2015).ADSCrossRefGoogle Scholar
  46. 46.
    M. He, T. Ma, J. Chang, Y. Zhang, Y. Y. Huang, J. J. Zang, J. Wu, and T. K. Dong, Acta Astron. Sin. 57, 1 (2016).ADSGoogle Scholar
  47. 47.
    Z. L. Xu, K. K. Duan, Z. Q. Shen, S. J. Lei, T. K. Dong, F. Gargano, S. Garrappa, D. Y. Guo, W. Jiang, X. Li, Y. F. Liang, M. N. Mazziotta, M. F. Munoz Salinas, M. Su, V. Vagelli, Q. Yuan, C. Yue, J. J. Zang, Y. P. Zhang, Y. L. Zhang, and S. Zimmer, Res. Astron. Astrophys. 18, 027 (2018), arXiv: 1712. 02939.ADSCrossRefGoogle Scholar
  48. 48.
    A. Tykhonov, G. Ambrosi, R. Asfandiyarov, P. Azzarello, P. Bernardini, B. Bertucci, A. Bolognini, F. Cadoux, A. DAmone, A. De Benedittis, I. De Mitri, M. Di Santo, Y. F. Dong, M. Duranti, D. DUrso, R. R. Fan, P. Fusco, V. Gallo, M. Gao, F. Gargano, S. Garrappa, K. Gong, M. Ionica, D. La Marra, S. J. Lei, X. Li, F. Loparco, G. Marsella, M. N. Mazziotta, W. X. Peng, R. Qiao, M. M. Salinas, A. Surdo, V. Vagelli, S. Vitillo, H. Y. Wang, J. Z. Wang, Z. M. Wang, D. Wu, X. Wu, F. Zhang, J. Y. Zhang, H. Zhao, and S. Zimmer, Nucl. Instrum. Methods Phys. Res. Sect. A 893, 43 (2018), arXiv: 1712. 02739.ADSCrossRefGoogle Scholar
  49. 49.
    S. Vitillo, and V. Gallo, Proc. Sci. ICRC2017, 240 (2017).Google Scholar
  50. 50.
    C. Yue, J. Zang, T. Dong, X. Li, Z. Zhang, S. Zimmer, W. Jiang, Y. Zhang, and D. Wei, Nucl. Instrum. Methods Phys. Res. Sect. A 856, 11 (2017), arXiv: 1703. 02821.ADSCrossRefGoogle Scholar
  51. 51.
    Z. Zhang, C. Wang, J. Dong, Y. Wei, S. Wen, Y. Zhang, Z. Li, C. Feng, S. Gao, Z. T. Shen, D. Zhang, J. Zhang, Q. Wang, S. Y. Ma, D. Yang, D. Jiang, D. Chen, Y. Hu, G. Huang, X. Wang, Z. Xu, S. Liu, Q. An, and Y. Gong, Nucl. Instrum. Methods Phys. Res. Sect. A 836, 98 (2016), arXiv: 1602. 07015.ADSCrossRefGoogle Scholar
  52. 52.
    J.–J. Zang, C. Yue, and X. Li, Proc. Sci. ICRC2017, 197 (2017).Google Scholar
  53. 53.
    J. Chang, Int. Cosmic Ray Conf. 5, 37 (1999).ADSGoogle Scholar
  54. 54.
    J. Chang, J. H. Adams Jr., H. S. Ahn, G. L. Bashindzhagyan, K. E. Batkov, M. Christl, A. R. Fazely, O. Ganel, R. M. Gunashingha, T. G. Guzik, J. Isbert, K. C. Kim, E. N. Kouznetsov, Z. W. Lin, M. I. Panasyuk, A. D. Panov, W. K. H. Schmidt, E. S. Seo, N. V. Sokolskaya, J. W. Watts, J. P. Wefel, J. Wu, and V. I. Zatsepin, Adv. Space Res. 42, 431 (2008).ADSCrossRefGoogle Scholar
  55. 55.
    A. C. Cummings, E. C. Stone, B. C. Heikkila, N. Lal, W. R. Webber, G. Jóhannesson, I. V. Moskalenko, E. Orlando, and T. A. Porter, Astrophys. J. 831, 18 (2016).ADSCrossRefGoogle Scholar
  56. 56.
    M. A. DuVernois, S. W. Barwick, J. J. Beatty, A. Bhattacharyya, C. R. Bower, C. J. Chaput, S. Coutu, G. A. de Nolfo, D. M. Lowder, S. Mc–Kee, D. Muller, J. A. Musser, S. L. Nutter, E. Schneider, S. P. Swordy, G. Tarle, A. D. Tomasch, and E. Torbet, Astrophys. J. 559, 296 (2001).ADSCrossRefGoogle Scholar
  57. 57.
    S. Torii, T. Tamura, N. Tateyama, K. Yoshida, J. Nishimura, T. Yamagami, H. Murakami, T. Kobayashi, Y. Komori, K. Kasahara, and T. Yuda, Astrophys. J. 559, 973 (2001).ADSCrossRefGoogle Scholar
  58. 58.
    S. Abdollahi, et al. (Fermi Collaboration), Phys. Rev. D 95, 082007 (2017), arXiv: 1704. 07195.ADSCrossRefGoogle Scholar
  59. 59.
    O. Adriani, et al. (CALET Collaboration), Phys. Rev. Lett. 119, 181101 (2017), arXiv: 1712. 01711.ADSCrossRefGoogle Scholar
  60. 60.
    F. Aharonian, et al. (H.E.S.S. Collaboration), Phys. Rev. Lett. 101, 261104 (2008), arXiv: 0811. 3894.ADSCrossRefGoogle Scholar
  61. 61.
    F. Aharonian, et al. (H.E.S.S. Collaboration), Astron. Astrophys. 508, 561 (2009), arXiv: 0905. 0105.ADSCrossRefGoogle Scholar
  62. 62.
    D. B. Tridon, et al. (MAGIC Collaboration), Int. Cosmic Ray Conf. 6, 47 (2011).Google Scholar
  63. 63.
    D. Staszak, et al. (VERITAS Collaboration), Int. Cosmic Ray Conf. 34, 411 (2015).ADSGoogle Scholar
  64. 64.
    E. C. Stone, A. C. Cummings, F. B. McDonald, B. C. Heikkila, N. Lal, and W. R. Webber, Science 341, 150 (2013).ADSCrossRefGoogle Scholar
  65. 65.
    T. Delahaye, R. Lineros, F. Donato, N. Fornengo, J. Lavalle, P. Salati, and R. Taillet, Astron. Astrophys. 501, 821 (2009), arXiv: 0809. 5268.ADSCrossRefGoogle Scholar
  66. 66.
    A. M. Atoyan, F. A. Aharonian, and H. J. Volk, Phys. Rev. D 52, 3265 (1995).ADSCrossRefGoogle Scholar
  67. 67.
    Q. Yuan, L. Feng, P. F. Yin, Y. Z. Fan, X. J. Bi, M. Y. Cui, T. K. Dong, Y. Q. Guo, K. Fang, H. B. Hu, X. Y. Huang, S. J. Lei, X. Li, S. J. Lin, H. Liu, P. X. Ma, W. X. Peng, R. Qiao, Z. Q. Shen, M. Su, Y. F. Wei, Z. L. Xu, C. Yue, J. J. Zang, C. Zhang, X. M. Zhang, Y. P. Zhang, Y. J. Zhang, and Y. L. Zhang, arXiv: 1711. 10989.Google Scholar
  68. 68.
    L. Accardo, et al. (AMS Collaboration), Phys. Rev. Lett. 113, 121101 (2014).ADSCrossRefGoogle Scholar
  69. 69.
    I. V. Moskalenko, and A. W. Strong, Astrophys. J. 493, 694 (1998).ADSCrossRefGoogle Scholar
  70. 70.
    J. Liu, Q. Yuan, X. J. Bi, H. Li, and X. Zhang, Phys. Rev. D 85, 043507 (2012), arXiv: 1106. 3882.ADSCrossRefGoogle Scholar
  71. 71.
    Q. Yuan, X. J. Bi, G. M. Chen, Y. Q. Guo, S. J. Lin, and X. Zhang, Astropart. Phys. 60, 1 (2015), arXiv: 1304. 1482.ADSCrossRefGoogle Scholar
  72. 72.
    M. Ackermann, et al. (Fermi Collaboration), Science 339, 807 (2013), arXiv: 1302. 3307.ADSGoogle Scholar
  73. 73.
    M. A. Malkov, P. H. Diamond, and R. Z. Sagdeev, Nat. Commun. 2, 194 (2011), arXiv: 1004. 4714.ADSCrossRefGoogle Scholar
  74. 74.
    Y. Ohira, K. Murase, and R. Yamazaki, Mon. Not. R. Astron. Soc. 410, 1577 (2010), arXiv: 1007. 4869.ADSGoogle Scholar
  75. 75.
    H. Li, and Y. Chen, Mon. Not. R. Astron. Soc.–Lett. 409, L35 (2010), arXiv: 1009. 0894.ADSCrossRefGoogle Scholar
  76. 76.
    Q. Yuan, and X. J. Bi, Phys. Lett. B 727, 1 (2013), arXiv: 1304. 2687.ADSCrossRefGoogle Scholar
  77. 77.
    Q. Yuan, and X. J. Bi, J. Cosmol. Astropart. Phys. 2015, 033 (2015), arXiv: 1408. 2424.CrossRefGoogle Scholar
  78. 78.
    S. J. Lin, Q. Yuan, and X. J. Bi, Phys. Rev. D 91, 063508 (2015), arXiv: 1409. 6248.ADSCrossRefGoogle Scholar
  79. 79.
    L. Feng, R. Z. Yang, H. N. He, T. K. Dong, Y. Z. Fan, and J. Chang, Phys. Lett. B 728, 250 (2014), arXiv: 1303. 0530.ADSCrossRefGoogle Scholar
  80. 80.
    I. Ch이is, and D. Hooper, Phys. Rev. D 88, 023013 (2013), arXiv: 1304. 1840.ADSCrossRefGoogle Scholar
  81. 81.
    F. A. Aharonian, A. M. Atoyan, and H. J. Voelk, Astron. Astrophys. 294, L41 (1995).ADSGoogle Scholar
  82. 82.
    M. D. Mauro, F. Donato, N. Fornengo, R. Lineros, and A. Vittino, J. Cosmol. Astropart. Phys. 2014, 006 (2014), arXiv: 1402. 0321.CrossRefGoogle Scholar
  83. 83.
    K. Fang, B. B. Wang, X. J. Bi, S. J. Lin, and P. F. Yin, Astrophys. J. 836, 172 (2017), arXiv: 1611. 10292.ADSCrossRefGoogle Scholar
  84. 84.
    J. F. Navarro, C. S. Frenk, and S. D. M. White, Astrophys. J. 490, 493 (1997).ADSCrossRefGoogle Scholar
  85. 85.
    P. A. R. Ade, et al. (Planck Collaboration), Astron. Astrophys. 594, A13 (2016), arXiv: 1502. 01589.CrossRefGoogle Scholar
  86. 86.
    X. Huang, Y. L. S. Tsai, and Q. Yuan, Comput. Phys. Commun. 213, 252 (2017), arXiv: 1603. 07119.ADSCrossRefGoogle Scholar
  87. 87.
    M. Ackermann, et al. (Fermi Collaboration), Astrophys. J. 799, 86 (2015), arXiv: 1410. 3696.ADSCrossRefGoogle Scholar
  88. 88.
    K. Fang, X. J. Bi, and P. F. Yin, Astrophys. J. 854, 57 (2018), arXiv: 1711. 10996.ADSCrossRefGoogle Scholar
  89. 89.
    V. N. Zirakashvili, and F. Aharonian, Astron. Astrophys. 465, 695 (2007).ADSCrossRefGoogle Scholar
  90. 90.
    X. J. Huang, Y. L. Wu, W. H. Zhang, and Y. F. Zhou, arXiv: 1712. 00005.Google Scholar
  91. 91.
    A. Fowlie, Phys. Lett. B 780, 181 (2018), arXiv: 1712. 05089.ADSCrossRefGoogle Scholar
  92. 92.
    S. F. Ge, H. J. He, and Y. C. Wang, Phys. Lett. B 781, 88 (2018), arXiv: 1712. 02744.ADSCrossRefGoogle Scholar
  93. 93.
    Y. Z. Fan, W. C. Huang, M. Spinrath, Y. L. S. Tsai, and Q. Yuan, Phys. Lett. B 781, 83 (2018), arXiv: 1711. 10995.ADSCrossRefGoogle Scholar
  94. 94.
    W. Chao, and Q. Yuan, arXiv: 1711. 11182.Google Scholar
  95. 95.
    J. Cao, L. Feng, X. Guo, L. Shang, F. Wang, and P. Wu, arXiv: 1711. 11452.Google Scholar
  96. 96.
    X. Liu, and Z. Liu, arXiv: 1711. 11579.Google Scholar
  97. 97.
    P. H. Gu, arXiv: 1711. 11333.Google Scholar
  98. 98.
    G. H. Duan, X. G. He, L. Wu, and J. M. Yang, arXiv: 1711. 11563.Google Scholar
  99. 99.
    K. Ghorbani, and P. H. Ghorbani, arXiv: 1712. 01239.Google Scholar
  100. 100.
    N. Okada, and O. Seto, arXiv: 1712. 03652.Google Scholar
  101. 101.
    T. Nomura, H. Okada, and P. Wu, arXiv: 1801. 04729.Google Scholar
  102. 102.
    T. Nomura, and H. Okada, arXiv: 1712. 00941.Google Scholar
  103. 103.
    Y. Sui, and Y. Zhang, arXiv: 1712. 03642.Google Scholar
  104. 104.
    L. Zu, C. Zhang, L. Feng, Q. Yuan, and Y. Z. Fan, arXiv: 1711. 11052.Google Scholar
  105. 105.
    Y. L. Tang, L. Wu, M. Zhang, and R. Zheng, arXiv: 1711. 11058.Google Scholar
  106. 106.
    W. Chao, H. K. Guo, H. L. Li, and J. Shu, arXiv: 1712. 00037.Google Scholar
  107. 107.
    H. B. Jin, B. Yue, X. Zhang, and X. Chen, arXiv: 1712. 00362.Google Scholar
  108. 108.
    Y. Gao, and Y. Z. Ma, arXiv: 1712. 00370.Google Scholar
  109. 109.
    J. S. Niu, T. Li, R. Ding, B. Zhu, H. F. Xue, and Y. Wang, arXiv: 1712. 00372.Google Scholar
  110. 110.
    P. H. Gu, arXiv: 1712. 00922.Google Scholar
  111. 111.
    R. Zhu, and Y. Zhang, arXiv: 1712. 01143.Google Scholar
  112. 112.
    F. Yang, M. Su, and Y. Zhao, arXiv: 1712. 01724.Google Scholar
  113. 113.
    R. Ding, Z. L. Han, L. Feng, and B. Zhu, arXiv: 1712. 02021.Google Scholar
  114. 114.
    Y. Zhao, K. Fang, M. Su, and M. C. Miller, arXiv: 1712. 03210.Google Scholar
  115. 115.
    J. Cao, X. Guo, L. Shang, F. Wang, P. Wu, and L. Zu, Phys. Rev. D 97, 063016 (2018), arXiv: 1712. 05351.ADSCrossRefGoogle Scholar
  116. 116.
    J. S. Niu, T. Li, and F. Z. Xu, arXiv: 1712. 09586.Google Scholar
  117. 117.
    C. Jin, W. Liu, H. B. Hu, and Y. Q. Guo, arXiv: 1611. 08384.Google Scholar
  118. 118.
    W. Zhu, J. Lan, J. Ruan, and F. Wang, arXiv: 1712. 07868.Google Scholar
  119. 119.
    P. H. Gu, and X. G. He, Phys. Lett. B 778, 292 (2018), arXiv: 1711. 11000.ADSCrossRefGoogle Scholar
  120. 120.
    G. H. Duan, L. Feng, F. Wang, L. Wu, J. M. Yang, and R. Zheng, J. High Energ. Phys. 2018, 107 (2018), arXiv: 1711. 11012.CrossRefGoogle Scholar
  121. 121.
    J. Cao, L. Feng, X. Guo, L. Shang, F. Wang, P. Wu, and L. Zu, Eur. Phys. J. C 78, 198 (2018), arXiv: 1712. 01244.ADSCrossRefGoogle Scholar
  122. 122.
    Z. L. Han, W. Wang, and R. Ding, Eur. Phys. J. C 78, 216 (2018), arXiv: 1712. 05722.ADSCrossRefGoogle Scholar
  123. 123.
    T. Li, N. Okada, and Q. Shafi, Phys. Lett. B 779, 130 (2018), arXiv: 1712. 00869.ADSCrossRefGoogle Scholar
  124. 124.
    P. Athron, C. Balazs, A. Fowlie, and Y. Zhang, J. High Energ. Phys. 2018, 121 (2018), arXiv: 1711. 11376.CrossRefGoogle Scholar
  125. 125.
    C. H. Chen, C. W. Chiang, and T. Nomura, Phys. Rev. D 97, 061302 (2018), arXiv: 1712. 00793.ADSCrossRefGoogle Scholar
  126. 126.
    G. Liu, F. Wang, W. Wang, and J. M. Yang, Chin. Phys. C 42, 035101 (2018), arXiv: 1712. 02381.ADSCrossRefGoogle Scholar
  127. 127.
    C. F. Kennel, and F. V. Coroniti, Astrophys. J. 283, 694 (1984).ADSCrossRefGoogle Scholar
  128. 128.
    F. A. Aharonian, S. V. Bogovalov, and D. Khangulyan, Nature 482, 507 (2012).ADSCrossRefGoogle Scholar
  129. 129.
    F. Aharonian, D. Khangulyan, and D. Malyshev, Astron. Astrophys. 547, A114 (2012), arXiv: 1207. 0458.ADSCrossRefGoogle Scholar
  130. 130.
    Y. Huang, X. W. Liu, H. B. Yuan, M. S. Xiang, H. W. Zhang, B. Q. Chen, J. J. Ren, C. Wang, Y. Zhang, Y. H. Hou, Y. F. Wang, and Z. H. Cao, Mon. Not. R. Astron. Soc. 463, 2623 (2016), arXiv: 1604.01216.ADSCrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory of Dark Matter and Space Astronomy, Purple Mountain ObservatoryChinese Academy of SciencesNanjingChina
  2. 2.School of Astronomy and Space ScienceUniversity of Science and Technology of ChinaHefeiChina
  3. 3.Center for High Energy PhysicsPeking UniversityBeijingChina

Personalised recommendations