Advertisement

Three-step three-party quantum secure direct communication

  • Shan-Shan Chen
  • Lan Zhou
  • Wei Zhong
  • Yu-Bo ShengEmail author
Article

Abstract

We propose a three-party quantum secure direct communication (QSDC) protocol with hyperentanglement in both spatial-mode and polarization degrees of freedom. The secret message can be encoded independently with desired unitary operations in two degrees of freedom. In this protocol, a party can synchronously obtain the other two parties’ messages. Compared with previous three-party QSDC protocols, our protocol has several advantages. First, the single photons in our protocol are only required to transmit for three times. This advantage makes this protocol simple and useful. Second, Alice and Bob can send different secret messages to Charlie, respectively. Finally, with hyperentanglement, this protocol has a higher information capacity than other protocols.

Keywords

quantum communication quantum secure direct communication hyperentanglement 

References

  1. 1.
    R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, Rev. Mod. Phys. 81, 865 (2009).ADSCrossRefGoogle Scholar
  2. 2.
    G. L. Long, W. Qin, Z. Yang, and J. L. Li, Sci. China-Phys. Mech. Astron. 61, 030311 (2018).ADSCrossRefGoogle Scholar
  3. 3.
    H. Li, Y. Liu, and G. L. Long, Sci. China-Phys. Mech. Astron. 60, 080311 (2017), arXiv: 1703.10348.ADSCrossRefGoogle Scholar
  4. 4.
    G. F. Xu, Sci. China-Phys. Mech. Astron. 61, 010331 (2018).ADSCrossRefGoogle Scholar
  5. 5.
    C. H. Bennett, and G. Brassard, in Quantum cryptography: Public key distribution and coin tossing: Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, India (IEEE, New York, 1984), pp. 175–179.Google Scholar
  6. 6.
    A. K. Ekert, Phys. Rev. Lett. 67, 661 (1991).ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, Phys. Rev. Lett. 70, 1895 (1993).ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    M. Hillery, V. Bužek, and A. Berthiaume, Phys. Rev. A 59, 1829 (1999).ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    G. L. Long, and X. S. Liu, Phys. Rev. A 65, 032302 (2002).ADSCrossRefGoogle Scholar
  10. 10.
    F. G. Deng, G. L. Long, and X. S. Liu, Phys. Rev. A 68, 042317 (2003).ADSCrossRefGoogle Scholar
  11. 11.
    F. G. Deng, and G. L. Long, Phys. Rev. A 69, 052319 (2004).ADSCrossRefGoogle Scholar
  12. 12.
    C. Wang, F. G. Deng, Y. S. Li, X. S. Liu, and G. L. Long, Phys. Rev. A 71, 044305 (2005).ADSCrossRefGoogle Scholar
  13. 13.
    Y. B. Sheng, and L. Zhou, Sci. Bull. 62, 1025 (2017).CrossRefGoogle Scholar
  14. 14.
    K. J. Zhang, L. Zhang, T. T. Song, and Y. H. Yang, Sci. China-Phys. Mech. Astron. 59, 660302 (2016).CrossRefGoogle Scholar
  15. 15.
    C. Cao, X. Chen, Y. W. Duan, L. Fan, R. Zhang, T. J. Wang, and C. Wang, Sci. China-Phys. Mech. Astron. 59, 100315 (2016).CrossRefGoogle Scholar
  16. 16.
    W. Huang, Q. Su, B. J. Xu, B. Liu, F. Fan, H. Y. Jia, and Y. H. Yang, Sci. China-Phys. Mech. Astron. 59, 120311 (2016).CrossRefGoogle Scholar
  17. 17.
    T. Sasaki, Y. Yamamoto, and M. Koashi, Nature 509, 475 (2014).ADSCrossRefGoogle Scholar
  18. 18.
    S. Wang, Z. Q. Yin, W. Chen, D. Y. He, X. T. Song, H. W. Li, L. J. Zhang, Z. Zhou, G. C. Guo, and Z. F. Han, Nat. Photon 9, 832 (2015).ADSCrossRefGoogle Scholar
  19. 19.
    C. M. Zhang, M. Li, Z. Q. Yin, H. W. Li, W. Chen, and Z. F. Han, Sci. China-Phys. Mech. Astron. 58, 590301 (2015).CrossRefGoogle Scholar
  20. 20.
    C. Wang, Z. Q. Yin, S. Wang, W. Chen, G. C. Guo, and Z. F. Han, Optica 4, 1016 (2017).CrossRefGoogle Scholar
  21. 21.
    Z. Li, Y. Zhang, X. Wang, B. Xu, X. Peng, and H. Guo, Phys. Rev. A 93, 012310 (2016), arXiv: 1601.02799.ADSCrossRefGoogle Scholar
  22. 22.
    Y. C. Zhang, Z. Li, S. Yu, W. Gu, X. Peng, and H. Guo, Phys. Rev. A 90, 052325 (2014).ADSCrossRefGoogle Scholar
  23. 23.
    B. K. Park, M. S. Lee, M. K. Woo, Y. S. Kim, S.W. Han, and S. Moon, Sci. China-Phys. Mech. Astron. 60, 060311 (2017).ADSCrossRefGoogle Scholar
  24. 24.
    Y. G. Yang, Z. C. Liu, X. B. Chen, Y. H. Zhou, and W. M. Shi, Sci. China-Phys. Mech. Astron. 60, 120311 (2017).ADSCrossRefGoogle Scholar
  25. 25.
    Y. Chang, S. B. Zhang, L. L. Yan, and G. H. Han, Chin. Phys. B 24, 050307 (2015).ADSCrossRefGoogle Scholar
  26. 26.
    X. L. Zhao, J. L. Li, P. H. Niu, H. Y. Ma, and D. Ruan, Chin. Phys. B 26, 030302 (2017).ADSCrossRefGoogle Scholar
  27. 27.
    S. Hassanpour, and M. Houshmand, Quantum Inf. Process. 14, 739 (2015), arXiv: 1407.3886.ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    P. Zawadzki, Quantum Inf. Process. 15, 1731 (2016).ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    X. Tan, and X. Zhang, Quantum Inf. Process. 15, 2137 (2016).ADSMathSciNetCrossRefGoogle Scholar
  30. 30.
    A. G. A. H. Guerra, F. F. S. Rios, and R. V. Ramos, Quantum Inf. Process. 15, 4747 (2016).ADSMathSciNetCrossRefGoogle Scholar
  31. 31.
    Z. R. Jian, G. S. Jin, and T. J. Wang, Int. J. Theor. Phys. 55, 1811 (2016).CrossRefGoogle Scholar
  32. 32.
    S. Mi, T. Wang, G. Jin, and C. Wang, IEEE Photonics J. 7, 7 (2015).CrossRefGoogle Scholar
  33. 33.
    X. H. Li, Acta. Phys. Sin. 64, 160307 (2015).Google Scholar
  34. 34.
    F. Z. Wu, G. J. Yang, H. B. Wang, J. Xiong, F. Alzahrani, A. Hobiny, and F. G. Deng, Sci. China-Phys. Mech. Astron. 60, 120313 (2017).ADSCrossRefGoogle Scholar
  35. 35.
    J. Y. Hu, B. Yu, M. Y. Jing, L. T. Xiao, S. T. Jia, G. Q. Qin, and G. L. Long, Light Sci. Appl. 5, e16144 (2016).CrossRefGoogle Scholar
  36. 36.
    W. Zhang, D. S. Ding, Y. B. Sheng, L. Zhou, B. S. Shi, and G. C. Guo, Phys. Rev. Lett. 118, 220501 (2017), arXiv: 1609.09184.ADSCrossRefGoogle Scholar
  37. 37.
    F. Zhu, W. Zhang, Y. Sheng, and Y. Huang, Sci. Bull. 62, 1519 (2017).CrossRefGoogle Scholar
  38. 38.
    X. R. Jin, X. Ji, Y. Q. Zhang, S. Zhang, S. K. Hong, K. H. Yeon, and C. I. Um, Phys. Lett. A 354, 67 (2006).ADSCrossRefGoogle Scholar
  39. 39.
    Z. X. Man, and Y. J. Xia, Chin. Phys. Lett. 24, 15 (2007).ADSCrossRefGoogle Scholar
  40. 40.
    M. Y. Wang, and F. L. Yan, Chin. Phys. Lett. 24, 2486 (2007).ADSCrossRefGoogle Scholar
  41. 41.
    S. K. Chong, and T. Hwang, Optics Commun. 284, 515 (2011).ADSCrossRefGoogle Scholar
  42. 42.
    L. L.Wang,W. P. Ma, M. L. Wang, and D. S. Shen, Int. J. Theor. Phys. 55, 2490 (2016).CrossRefGoogle Scholar
  43. 43.
    Y. F. He, and W. P. Ma, Quantum Inf. Process. 16, 252 (2017).ADSCrossRefGoogle Scholar
  44. 44.
    Y. B. Sheng, F. G. Deng, and G. L. Long, Phys. Rev. A 82, 032318 (2010), arXiv: 1103.0230.ADSCrossRefGoogle Scholar
  45. 45.
    C. Simon, and J. W. Pan, Phys. Rev. Lett. 89, 257901 (2002).ADSCrossRefGoogle Scholar
  46. 46.
    Y. B. Sheng, F. G. Deng, and H. Y. Zhou, Phys. Rev. A 77, 042308 (2008), arXiv: 0805.0032.ADSCrossRefGoogle Scholar
  47. 47.
    Y. B. Sheng, and F. G. Deng, Phys. Rev. A 82, 044305 (2010), arXiv: 1008.3509.ADSCrossRefGoogle Scholar
  48. 48.
    F. G. Deng, B. C. Ren, and X. H. Li, Sci. Bull. 62, 46 (2017).CrossRefGoogle Scholar
  49. 49.
    Y. B. Sheng, and L. Zhou, Sci. Rep. 5, 7815 (2015).CrossRefGoogle Scholar
  50. 50.
    S. P. Walborn, S. Pádua, and C. H. Monken, Phys. Rev. A 68, 042313 (2003).ADSMathSciNetCrossRefGoogle Scholar
  51. 51.
    T. C. Wei, J. T. Barreiro, and P. G. Kwiat, Phys. Rev. A 75, 060305 (2007).ADSMathSciNetCrossRefGoogle Scholar
  52. 52.
    B. C. Ren, H. R. Wei, M. Hua, T. Li, and F. G. Deng, Opt. Express 20, 24664 (2012), arXiv: 1207.0168.ADSCrossRefGoogle Scholar
  53. 53.
    T. J. Wang, Y. Lu, and G. L. Long, Phys. Rev. A 86, 042337 (2012).ADSCrossRefGoogle Scholar
  54. 54.
    X. H. Li, and S. Ghose, Phys. Rev. A 96, 020303 (2017).ADSCrossRefGoogle Scholar
  55. 55.
    X. B. Wang, Phys. Rev. Lett. 94, 230503 (2005).ADSCrossRefGoogle Scholar
  56. 56.
    H. K. Lo, X. Ma, and K. Chen, Phys. Rev. Lett. 94, 230504 (2005).ADSCrossRefGoogle Scholar
  57. 57.
    F. Steinlechner, S. Ecker, M. Fink, B. Liu, J. Bavaresco, M. Huber, T. Scheidl, and R. Ursin, Nat. Commun. 8, 15971 (2017), arXiv: 1612.00751.ADSCrossRefGoogle Scholar
  58. 58.
    B. C. Ren, F. F. Du, and F. G. Deng, Phys. Rev. A 90, 052309 (2014), arXiv: 1408.0048.ADSCrossRefGoogle Scholar
  59. 59.
    B. C. Ren, F. F. Du, and F. G. Deng, Phys. Rev. A 88, 012302 (2013), arXiv: 1306.0050.ADSCrossRefGoogle Scholar
  60. 60.
    T. J. Wang, C. Cao, and C. Wang, Phys. Rev. A 89, 052303 (2014).ADSCrossRefGoogle Scholar
  61. 61.
    T. J. Wang, and C. Wang, Opt. Express 23, 31550 (2015).ADSCrossRefGoogle Scholar
  62. 62.
    T. J. Wang, L. L. Liu, R. Zhang, C. Cao, and C. Wang, Opt. Express 23, 9284 (2015).ADSCrossRefGoogle Scholar
  63. 63.
    Y. X. Jiang, P. L. Guo, C. Y. Gao, H. B. Wang, F. Alzahrani, A. Hobiny, and F. G. Deng, Sci. China-Phys. Mech. Astron. 60, 120312 (2017), arXiv: 1804.00873.ADSCrossRefGoogle Scholar
  64. 64.
    D. S. Ding, W. Zhang, Z. Y. Zhou, S. Shi, B. S. Shi, and G. C. Guo, Nat. Photon 9, 332 (2015).ADSCrossRefGoogle Scholar
  65. 65.
    W. Zhang, D. S. Ding, M. X. Dong, S. Shi, K. Wang, S. L. Liu, Y. Li, Z. Y. Zhou, B. S. Shi, and G. C. Guo, Nat. Commun. 7, 13514 (2016).ADSCrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Shan-Shan Chen
    • 1
  • Lan Zhou
    • 2
  • Wei Zhong
    • 1
  • Yu-Bo Sheng
    • 1
    • 3
    Email author
  1. 1.Institute of Quantum Information and TechnologyNanjing University of Posts and TelecommunicationsNanjingChina
  2. 2.College of Mathematics & PhysicsNanjing University of Posts and TelecommunicationsNanjingChina
  3. 3.Key Lab of Broadband Wireless Communication and Sensor Network TechnologyNanjing University of Posts and Telecommunications, Ministry of EducationNanjingChina

Personalised recommendations