GaZn-VZn acceptor complex defect in Ga-doped ZnO

  • AiHua Tang
  • ZengXia Mei
  • YaoNan Hou
  • LiShu Liu
  • Vishnukanthan Venkatachalapathy
  • Alexander Azarov
  • Andrej Kuznetsov
  • XiaoLong Du


Gallium (Ga)-doped ZnO is regarded as a promising plasmonic material with a wide range of applications in plasmonics. In this study, zinc self-diffusion experiments are adopted to disclose the nature of the dominant compensating defect in Ga-doped ZnO isotopic heterostructures. The (GaZn-VZn) complex defect, instead of the isolated VZn2−, is identified as the predominant compensating acceptor center responsible for the low donor doping efficiency. The comparative diffusion experiments operated by the secondary ion mass spectrometry reveal a ~0.78 eV binding energy of this complex defect, which well matches the electrical activation energy derived from the temperature-dependent Hall effect measurements (~(0.82±0.02) eV). These findings contribute to an essential understanding of the (GaZn-VZn) complex defect and the potential engineering routes of heavily Ga-doped ZnO.


Ga-doped ZnO complex defect self-diffusion 

Supplementary material

11433_2018_9195_MOESM1_ESM.pdf (592 kb)
Supplemental Material for GaZn-VZn acceptor complex defect in Ga-doped ZnO


  1. 1.
    K. Ellmer, Nat. Photon. 6, 809 (2012).ADSCrossRefGoogle Scholar
  2. 2.
    T. Minami, Semicond. Sci. Technol. 20, S35 (2005).ADSCrossRefGoogle Scholar
  3. 3.
    P. D. C. King, and T. D. Veal, J. Phys.-Condens. Matter 23, 334214 (2011).CrossRefGoogle Scholar
  4. 4.
    P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, Laser Photon. Rev. 4, 795 (2010).ADSCrossRefGoogle Scholar
  5. 5.
    D. C. Look, and K. D. Leedy, Appl. Phys. Lett. 102, 182107 (2013).ADSCrossRefGoogle Scholar
  6. 6.
    S. Sadofev, S. Kalusniak, P. Schäfer, and F. Henneberger, Appl. Phys. Lett. 102, 181905 (2013).ADSCrossRefGoogle Scholar
  7. 7.
    H. Kim, M. Osofsky, S. M. Prokes, O. J. Glembocki, and A. Piqué, Appl. Phys. Lett. 102, 171103 (2013).ADSCrossRefGoogle Scholar
  8. 8.
    S. Kalusniak, S. Sadofev, and F. Henneberger, Phys. Rev. Lett. 112, 137401 (2014).ADSCrossRefGoogle Scholar
  9. 9.
    T. Tyborski, S. Kalusniak, S. Sadofev, F. Henneberger, M. Woerner, and T. Elsaesser, Phys. Rev. Lett. 115, 147401 (2015).ADSCrossRefGoogle Scholar
  10. 10.
    D. C. Look, K. D. Leedy, L. Vines, B. G. Svensson, A. Zubiaga, F. Tuomisto, D. R. Doutt, and L. J. Brillson, Phys. Rev. B 84, 115202 (2011).ADSCrossRefGoogle Scholar
  11. 11.
    D. O. Demchenko, B. Earles, H. Y. Liu, V. Avrutin, N. Izyumskaya, Ü. Özgür, and H. Morkoç, Phys. Rev. B 84, 075201 (2011).ADSCrossRefGoogle Scholar
  12. 12.
    J. T-Thienprasert, S. Rujirawat, W. Klysubun, J. N. Duenow, T. J. Coutts, S. B. Zhang, D. C. Look, and S. Limpijumnong, Phys. Rev. Lett. 110, 055502 (2013).ADSCrossRefGoogle Scholar
  13. 13.
    J. Stehr, K. Johansen, T. Bjørheim, L. Vines, B. Svensson, W. Chen, and I. Buyanova, Phys. Rev. Appl. 2, 021001 (2014).ADSCrossRefGoogle Scholar
  14. 14.
    A. Janotti, and C. G. van de Walle, Phys. Rev. B 76, 165202 (2007).ADSCrossRefGoogle Scholar
  15. 15.
    P. Erhart, K. Albe, and A. Klein, Phys. Rev. B 73, 205203 (2006).ADSCrossRefGoogle Scholar
  16. 16.
    R. Vidya, P. Ravindran, H. Fjellvåg, B. G. Svensson, E. Monakhov, M. Ganchenkova, and R. M. Nieminen, Phys. Rev. B 83, 045206 (2011).ADSCrossRefGoogle Scholar
  17. 17.
    P. S. Xu, Y. M. Sun, C. S. Shi, F. Q. Xu, and H. B. Pan, Nucl. Instrum. Methods Phys. Res. Sect. B 199, 286 (2003).ADSCrossRefGoogle Scholar
  18. 18.
    H. Zeng, G. Duan, Y. Li, S. Yang, X. Xu, and W. Cai, Adv. Funct. Mater. 20, 561 (2010).CrossRefGoogle Scholar
  19. 19.
    F. Tuomisto, K. Saarinen, D. C. Look, and G. C. Farlow, Phys. Rev. B 72, 085206 (2005).ADSCrossRefGoogle Scholar
  20. 20.
    D. C. Look, J. W. Hemsky, and J. R. Sizelove, Phys. Rev. Lett. 82, 2552 (1999).ADSCrossRefGoogle Scholar
  21. 21.
    S. J. Clark, J. Robertson, S. Lany, and A. Zunger, Phys. Rev. B 81, 115311 (2010).ADSCrossRefGoogle Scholar
  22. 22.
    A. Azarov, V. Venkatachalapathy, Z. Mei, L. Liu, X. Du, A. Galeckas, E. Monakhov, B. G. Svensson, and A. Kuznetsov, Phys. Rev. B 94, 195208 (2016).ADSCrossRefGoogle Scholar
  23. 23.
    L. Liu, Z. Mei, A. Tang, A. Azarov, A. Kuznetsov, Q. K. Xue, and X. Du, Phys. Rev. B 93, 235305 (2016), arXiv: 1603.02831ADSCrossRefGoogle Scholar
  24. 24.
    L. Wang, L. Hsu, E. E. Haller, J. W. Erickson, A. Fischer, K. Eberl, and M. Cardona, Phys. Rev. Lett. 76, 2342 (1996).ADSCrossRefGoogle Scholar
  25. 25.
    H. Bracht, E. E. Haller, and R. Clark-Phelps, Phys. Rev. Lett. 81, 393 (1998).ADSCrossRefGoogle Scholar
  26. 26.
    H. Bracht, S. P. Nicols, W. Walukiewicz, J. P. Silveira, F. Briones, and E. E. Haller, Nature 408, 69 (2000).ADSCrossRefGoogle Scholar
  27. 27.
    L. M. Wong, S. Y. Chiam, J. Q. Huang, S. J. Wang, J. S. Pan, and W. K. Chim, Appl. Phys. Lett. 98, 022106 (2011).ADSCrossRefGoogle Scholar
  28. 28.
    B. Z. Dong, H. Hu, G. J. Fang, X. Z. Zhao, D. Y. Zheng, and Y. P. Sun, J. Appl. Phys. 103, 073711 (2008).ADSCrossRefGoogle Scholar
  29. 29.
    P. Erhart, and K. Albe, Phys. Rev. B 73, 115207 (2006).ADSCrossRefGoogle Scholar
  30. 30.
    J. Y. Noh, H. Kim, Y. S. Kim, and C. H. Park, J. Appl. Phys. 113, 153703 (2013).ADSCrossRefGoogle Scholar
  31. 31.
    G. W. Tomlins, J. L. Routbort, and T. O. Mason, J. Appl. Phys. 87, 117 (2000).ADSCrossRefGoogle Scholar
  32. 32.
    P. Erhart, and K. Albe, Appl. Phys. Lett. 88, 201918 (2006).ADSCrossRefGoogle Scholar
  33. 33.
    H. Schmidt, M. Gupta, and M. Bruns, Phys. Rev. Lett. 96, 055901 (2006).ADSCrossRefGoogle Scholar
  34. 34.
    M. A. N. Nogueira, W. B. Ferraz, and A. C. S. Sabioni, Mat. Res. 6, 167 (2003).CrossRefGoogle Scholar
  35. 35.
    J. C. Fisher, J. Appl. Phys. 22, 74 (1951).ADSCrossRefGoogle Scholar
  36. 36.
    G. W. Tomlins, J. L. Routbort, and T. O. Mason, J. Am. Ceram. Soc. 81, 869 (1998).CrossRefGoogle Scholar
  37. 37.
    R. Kube, H. Bracht, E. Hüger, H. Schmidt, J. L. Hansen, A. N. Larsen, J. W. Ager, E. E. Haller, T. Geue, and J. Stahn, Phys. Rev. B 88, 085206 (2013).ADSCrossRefGoogle Scholar
  38. 38.
    Y. Ke, S. Lany, J. J. Berry, J. D. Perkins, P. A. Parilla, A. Zakutayev, T. Ohno, R. O’Hayre, and D. S. Ginley, Adv. Funct. Mater. 24, 2875 (2014).CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • AiHua Tang
    • 1
    • 3
  • ZengXia Mei
    • 1
  • YaoNan Hou
    • 1
  • LiShu Liu
    • 1
  • Vishnukanthan Venkatachalapathy
    • 2
  • Alexander Azarov
    • 2
  • Andrej Kuznetsov
    • 2
  • XiaoLong Du
    • 1
    • 3
  1. 1.Key Laboratory for Renewable Energy, Beijing National Laboratory for Condensed Matter Physics, Institute of PhysicsChinese Academy of SciencesBeijingChina
  2. 2.Department of Physics, Centre for Materials Science and NanotechnologyUniversity of OsloOsloNorway
  3. 3.School of Physical SciencesUniversity of Chinese Academy of SciencesBeijingChina

Personalised recommendations