Advertisement

Notes on integrable boundary interactions of open SU(4) alternating spin chains

  • JunBao Wu
Article

Abstract

Ref. [J. High Energy Phys. 1708, 001 (2017)] showed that the planar flavored Ahanory-Bergman-Jafferis-Maldacena (ABJM) theory is integrable in the scalar sector at two-loop order using coordinate Bethe ansatz. A salient feature of this case is that the boundary reflection matrices are anti-diagonal with respect to the chosen basis. In this paper, we relax the coefficients of the boundary terms to be general constants to search for integrable systems among this class. We found that the only integrable boundary interaction at each end of the spin chain aside from the one in ref. [J. High Energy Phys. 1708, 001 (2017)] is the one with vanishing boundary interactions leading to diagonal reflection matrices. We also construct non-supersymmetric planar flavored ABJM theory which leads to trivial boundary interactions at both ends of the open chain from the two-loop anomalous dimension matrix in the scalar sector.

Keywords

Chern-Simons gauge theory integrable systems expansions for large numbers of components 

PACS number(s)

11.15.Yc 02.30.Ik 11.15.Pg 

References

  1. 1.
    N. Beisert, C. Ahn, L. F. Alday, Z. Bajnok, J. M. Drummond, L. Freyhult, N. Gromov, R. A. Janik, V. Kazakov, T. Klose, G. P. Korchemsky, C. Kristjansen, M. Magro, T. McLoughlin, J. A. Minahan, R. I. Nepomechie, A. Rej, R. Roiban, S. Schafer-Nameki, C. Sieg, M. Staudacher, A. Torrielli, A. A. Tseytlin, P. Vieira, D. Volin, and K. Zoubos, Lett. Math. Phys. 99, 3 (2012), arXiv: 1012.3982.ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    L. Brink, J. H. Schwarz, and J. Scherk, Nucl. Phys. B 121, 77 (1977).ADSCrossRefGoogle Scholar
  3. 3.
    O. Aharony, O. Bergman, D. L. Jafferis, and J. Maldacena, J. High Energy Phys. 2008, 091 (2008), arXiv: 0806.1218.CrossRefGoogle Scholar
  4. 4.
    J. A. Minahan, and K. Zarembo, J. High Energy Phys. 2003, 13 (2003).ADSCrossRefGoogle Scholar
  5. 5.
    J. A. Minahan, and K. Zarembo, J. High Energy Phys. 2008, 40 (2008), arXiv: 0806.3951.CrossRefGoogle Scholar
  6. 6.
    D. Bak, and S. J. Rey, J. High Energy Phys. 2008, 53 (2008), arXiv: 0807.2063.CrossRefGoogle Scholar
  7. 7.
    A. Karch, and E. Katz, J. High Energy Phys. 2002, 43 (2002).CrossRefGoogle Scholar
  8. 8.
    S. Hohenegger, and I. Kirsch, J. High Energy Phys. 2009, 129 (2009), arXiv: 0903.1730.CrossRefGoogle Scholar
  9. 9.
    D. Gaiotto, and D. L. Jafferis, J. High Energy Phys. 2012, 15 (2012), arXiv: 0903.2175.CrossRefGoogle Scholar
  10. 10.
    Y. Hikida, W. Li, and T. Takayanagi, J. High Energy Phys. 2009, 65 (2009), arXiv: 0903.2194.CrossRefGoogle Scholar
  11. 11.
    B. A. Burrington, J. T. Liu, L. A. P. Zayas, and D. Vaman, J. High Energy Phys. 2005, 22 (2005).CrossRefGoogle Scholar
  12. 12.
    I. Kirsch, and D. Vaman, Phys. Rev. D 72, 026007 (2005).ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    E. Conde, and A. V. Ramallo, J. High Energy Phys. 2011, 99 (2011), arXiv: 1105.6045.CrossRefGoogle Scholar
  14. 14.
    B. Chen, X. J. Wang, and Y. S. Wu, J. High Energy Phys. 2004, 29 (2004).CrossRefGoogle Scholar
  15. 15.
    B. Chen, X. J. Wang, and Y. S. Wu, Phys. Lett. B 591, 170 (2004).ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    T. G. Erler, and N. Mann, J. High Energy Phys. 2006, 131 (2006).CrossRefGoogle Scholar
  17. 17.
    N. Bai, H. H. Chen, S. He, J. B. Wu, W. L. Yang, and M. Q. Zhu, J. High Energy Phys. 2017, 1 (2017), arXiv: 1704.05807.CrossRefGoogle Scholar
  18. 18.
    D. Giataganas, and K. Zoubos, J. High Energ. Phys. 2017, 42 (2017), arXiv: 1707.04033.CrossRefGoogle Scholar
  19. 19.
    C. Ahn, and R. I. Nepomechie, J. High Energy Phys. 2009, 144 (2009), arXiv: 0901.3334.CrossRefGoogle Scholar
  20. 20.
    Y. Y. Li, J. Cao, W. L. Yang, K. Shi, and Y. Wang, Nucl. Phys. B 879, 98 (2014), arXiv: 1311.0432.ADSCrossRefGoogle Scholar
  21. 21.
    I. V. Cherednik, Theor. Math. Phys. 61, 977 (1984) [Teor. Mat. Fiz. 61, 35 (1984)].CrossRefGoogle Scholar
  22. 22.
    E. K. Sklyanin, J. Phys. A-Math. Gen. 21, 2375 (1988).ADSCrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsTianjin UniversityTianjinChina
  2. 2.Center for High Energy PhysicsPeking UniversityBeijingChina

Personalised recommendations