Advertisement

Efficient universal quantum channel simulation in IBM’s cloud quantum computer

  • Shi-Jie Wei
  • Tao Xin
  • Gui-Lu Long
Article

Abstract

The study of quantum channels is an important field and promises a wide range of applications, because any physical process can be represented as a quantum channel that transforms an initial state into a final state. Inspired by the method of performing non-unitary operators by the linear combination of unitary operations, we proposed a quantum algorithm for the simulation of the universal single-qubit channel, described by a convex combination of “quasi-extreme” channels corresponding to four Kraus operators, and is scalable to arbitrary higher dimension. We demonstrated the whole algorithm experimentally using the universal IBM cloud-based quantum computer and studied the properties of different qubit quantum channels. We illustrated the quantum capacity of the general qubit quantum channels, which quantifies the amount of quantum information that can be protected. The behavior of quantum capacity in different channels revealed which types of noise processes can support information transmission, and which types are too destructive to protect information. There was a general agreement between the theoretical predictions and the experiments, which strongly supports our method. By realizing the arbitrary qubit channel, this work provides a universally- accepted way to explore various properties of quantum channels and novel prospect for quantum communication.

Keywords

quantum channel quantum algorithm quantum capacity IBM quantum cloud 

References

  1. 1.
    R. P. Feynman, Int. J. Theor. Phys. 21, 467 (1982).CrossRefGoogle Scholar
  2. 2.
    S. Lloyd, Science 273, 1073 (1996).ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    S. J. Wei, T. Wang, D. Ruan, and G. L. Long, Sci. Sin.-Inf. 47, 1277 (2017).CrossRefGoogle Scholar
  4. 4.
    S. Y. Hou, H. Li, and G. L. Long, Sci. Bull. 62, 863 (2017).CrossRefGoogle Scholar
  5. 5.
    T. Xin, S. Huang, S. Lu, K. Li, Z. Luo, Z. Yin, J. Li, D. Lu, G. Long, and B. Zeng, Sci. Bull. 63, 17 (2018).CrossRefGoogle Scholar
  6. 6.
    F. Z. Jin, H.W. Chen, X. Rong, H. Zhou, M. J. Shi, Q. Zhang, C. Y. Ju, Y. F. Cai, S. L. Luo, X. H. Peng, and J. F. Du, Sci. China-Phys. Mech. Astron. 59, 630302 (2016).CrossRefGoogle Scholar
  7. 7.
    J. Pearson, G. R. Feng, C. Zheng, and G. L. Long, Sci. China-Phys. Mech. Astron. 59, 120312 (2016).CrossRefGoogle Scholar
  8. 8.
    X. L. Zhen, T. Xin, F. H. Zhang, and G. L. Long, Sci. China-Phys. Mech. Astron. 59, 690312 (2016).CrossRefGoogle Scholar
  9. 9.
    T. Li, and Z. Q. Yin, Sci. Bull. 61, 163 (2016).CrossRefGoogle Scholar
  10. 10.
    Y. B. Sheng, and L. Zhou, Sci. Bull. 62, 1025 (2017).CrossRefGoogle Scholar
  11. 11.
    L. Balents, Nature 464, 199 (2010).ADSCrossRefGoogle Scholar
  12. 12.
    S. Sachdev, Quantum Phase Transitions (Cambridge University Press, Cambridge, 1999).zbMATHGoogle Scholar
  13. 13.
    B. P. Lanyon, J. D. Whitfield, G. G. Gillett, M. E. Goggin, M. P. Almeida, I. Kassal, J. D. Biamonte, M. Mohseni, B. J. Powell, M. Barbieri, A. Aspuru-Guzik, and A. G. White, Nat. Chem. 2, 106 (2010).CrossRefGoogle Scholar
  14. 14.
    J. I. Cirac, P. Maraner, and J. K. Pachos, Phys. Rev. Lett. 105, 190403 (2010).ADSCrossRefGoogle Scholar
  15. 15.
    A. Bermudez, L. Mazza, M. Rizzi, N. Goldman, M. Lewenstein, and M. A. Martin-Delgado, Phys. Rev. Lett. 105, 190404 (2010).ADSCrossRefGoogle Scholar
  16. 16.
    R. Gerritsma, G. Kirchmair, F. Zähringer, E. Solano, R. Blatt, and C. F. Roos, Nature 463, 68 (2010).ADSCrossRefGoogle Scholar
  17. 17.
    D. Bacon, A. M. Childs, I. L. Chuang, J. Kempe, D. W. Leung, and X. Zhou, Phys. Rev. A 64, 062302 (2001).ADSCrossRefGoogle Scholar
  18. 18.
    S. Lloyd, and L. Viola, Phys. Rev. A 65, 010101(R) (2001).CrossRefGoogle Scholar
  19. 19.
    H. Weimer, M. Müller, I. Lesanovsky, P. Zoller, and H. P. Büchler, Nat. Phys 6, 382 (2010).CrossRefGoogle Scholar
  20. 20.
    H. Wang, S. Ashhab, and F. Nori, Phys. Rev. A 83, 062317 (2011).ADSCrossRefGoogle Scholar
  21. 21.
    M. Kliesch, T. Barthel, C. Gogolin, M. Kastoryano, and J. Eisert, Phys. Rev. Lett. 107, 120501 (2011).ADSCrossRefGoogle Scholar
  22. 22.
    T. Barthel, and M. Kliesch, Phys. Rev. Lett. 108, 230504 (2012).ADSCrossRefGoogle Scholar
  23. 23.
    R. Iten, R. Colbeck, and M. Christandl, Phys. Rev. A 95, 052316 (2017).ADSCrossRefGoogle Scholar
  24. 24.
    A. Aspuru-Guzik, Science 309, 1704 (2005).ADSCrossRefGoogle Scholar
  25. 25.
    B. M. Terhal, and D. P. DiVincenzo, Phys. Rev. A 61, 022301 (2000).ADSCrossRefGoogle Scholar
  26. 26.
    D. Poulin, and P. Wocjan, Phys. Rev. Lett. 103, 220502 (2009).ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    M. Müller, S. Diehl, G. Pupillo, and P. Zoller, Adv. At. Mol. Opt. Phys. 61, 1 (2012).ADSCrossRefGoogle Scholar
  28. 28.
    J. T. Barreiro, M. Müller, P. Schindler, D. Nigg, T. Monz, M. Chwalla, M. Hennrich, C. F. Roos, P. Zoller, and R. Blatt, Nature 470, 486 (2011).ADSCrossRefGoogle Scholar
  29. 29.
    K. L. Brown, W. J. Munro, and V. M. Kendon, Entropy 12, 2268 (2010).ADSMathSciNetCrossRefGoogle Scholar
  30. 30.
    I. M. Georgescu, S. Ashhab, and F. Nori, Rev. Mod. Phys. 86, 153 (2014).ADSCrossRefGoogle Scholar
  31. 31.
    T. Prosen, and E. Ilievski, Phys. Rev. Lett. 107, 060403 (2011).ADSCrossRefGoogle Scholar
  32. 32.
    F. Verstraete, M. M. Wolf, and J. I. Cirac, Nat. Phys. 5, 633 (2009).CrossRefGoogle Scholar
  33. 33.
    W. F. Stinespring, Proc. Am. Math. Soc. 6, 211 (1955).MathSciNetGoogle Scholar
  34. 34.
    M. A. Nielsen, and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000).zbMATHGoogle Scholar
  35. 35.
    M. Mottonen, and J. J. Vartiainen, Trends in Quantum Computing Research (Nova, New York, 2006).Google Scholar
  36. 36.
    M. P. Almeida, F. de Melo, M. Hor-Meyll, A. Salles, S. P. Walborn, P. H. S. Ribeiro, and L. Davidovich, Science 316, 579 (2007).ADSCrossRefGoogle Scholar
  37. 37.
    L. Qing, L. Jian, and G. Guang-Can, Chin. Phys. Lett. 24, 1809 (2007).ADSCrossRefGoogle Scholar
  38. 38.
    T. Hannemann, C. Wunderlich, M. Plesch, M. Ziman, and V. Buzek, arXiv: 0904.0923.Google Scholar
  39. 39.
    J. C. Lee, Y. C. Jeong, Y. S. Kim, and Y. H. Kim, Opt. Express 19, 16309 (2011).ADSCrossRefGoogle Scholar
  40. 40.
    K. A. G. Fisher, R. Prevedel, R. Kaltenbaek, and K. J. Resch, New J. Phys. 14, 033016 (2012).ADSCrossRefGoogle Scholar
  41. 41.
    M. Piani, D. Pitkanen, R. Kaltenbaek, and N. Lütkenhaus, Phys. Rev. A 84, 032304 (2011).ADSCrossRefGoogle Scholar
  42. 42.
    D. S. Wang, D. W. Berry, M. C. de Oliveira, and B. C. Sanders, Phys. Rev. Lett. 111, 130504 (2013).ADSCrossRefGoogle Scholar
  43. 43.
    M. B. Ruskai, S. Szarek, and E. Werner, Linear Algebra Appl. 347, 159 (2002).MathSciNetCrossRefGoogle Scholar
  44. 44.
    F. Caruso, V. Giovannetti, C. Lupo, and S. Mancini, Rev. Mod. Phys. 86, 1203 (2014).ADSCrossRefGoogle Scholar
  45. 45.
    A. Jamiolkowski, Rep. Math. Phys. 3, 275 (1972).ADSCrossRefGoogle Scholar
  46. 46.
    M. D. Choi, Linear Algebra Appl. 10, 285 (1975).MathSciNetCrossRefGoogle Scholar
  47. 47.
    C. King, and M. B. Ruskai, IEEE Trans. Inform. Theor. 47, 192 (2001).CrossRefGoogle Scholar
  48. 48.
    G. L. Long, Commun. Theor. Phys. 45, 825 (2006).ADSCrossRefGoogle Scholar
  49. 49.
    G. L. Long, Int. J. Theor. Phys. 50, 1305 (2011).CrossRefGoogle Scholar
  50. 50.
    G. L. Long, Y. Liu, Theor. Phys. 50, 1303 (2008).ADSGoogle Scholar
  51. 51.
    G. L. Long, Y. Liu, and C. Wang, Commun. Theor. Phys. 51, 65 (2009).ADSCrossRefGoogle Scholar
  52. 52.
    S. Gudder, Quantum Inf. Process. 6, 37 (2007).MathSciNetCrossRefGoogle Scholar
  53. 53.
    G. L. Long, Quantum Inf. Process. 6, 49 (2007).ADSMathSciNetCrossRefGoogle Scholar
  54. 54.
    S. Gudder, Int. J. Theor. Phys. 47, 268 (2008).CrossRefGoogle Scholar
  55. 55.
    Y. Q. Wang, H. K. Du, and Y. N. Dou, Int. J. Theor. Phys. 47, 2268 (2008).CrossRefGoogle Scholar
  56. 56.
    H. K. Du, Y. Q.Wang, and J. L. Xu, J. Math. Phys. 49, 013507 (2008).ADSMathSciNetCrossRefGoogle Scholar
  57. 57.
    S. J. Wei, and G. L. Long, Quantum Inf. Process. 15, 1189 (2016).ADSMathSciNetCrossRefGoogle Scholar
  58. 58.
    S. J. Wei, D. Ruan, and G. L. Long, Sci. Rep. 6, 30727 (2016).ADSCrossRefGoogle Scholar
  59. 59.
    Z. H. Guo, H. X. Cao, and S. X. Qu, Sci. China-Phys. Mech. Astron. 58, 040302 (2015).Google Scholar
  60. 60.
    D. Alsina, and J. I. Latorre, Phys. Rev. A 94, 012314 (2016).ADSCrossRefGoogle Scholar
  61. 61.
    S. J. Devitt, Phys. Rev. A 94, 032329 (2016).ADSCrossRefGoogle Scholar
  62. 62.
    M. Hebenstreit, D. Alsina, J. I. Latorre, B. Kraus, arXiv: 1701.02970.Google Scholar
  63. 63.
    S. M. Fei, Sci. China-Phys. Mech. Astron. 60, 020331 (2017).ADSCrossRefGoogle Scholar
  64. 64.
    H. Y. Wang, W. Q. Zheng, N. K. Yu, K. R. Li, D. W. Lu, T. Xin, C. Li, Z. F. Ji, D. Kribs, B. Zeng, X. H. Peng, and J. F. Du, Sci. China-Phys. Mech. Astron. 59, 100313 (2016).CrossRefGoogle Scholar
  65. 65.
    G. F. Xu, L. C. Kwek, and D. M. Tong, Sci. China-Phys. Mech. Astron. 55, 808 (2012).ADSCrossRefGoogle Scholar
  66. 66.
    H. Barnum, M. A. Nielsen, and B. Schumacher, Phys. Rev. A 57, 4153 (1998).ADSCrossRefGoogle Scholar
  67. 67.
    S. Lloyd, Phys. Rev. A 55, 1613 (1997).ADSMathSciNetCrossRefGoogle Scholar
  68. 68.
    F. G. Deng, B. C. Ren, and X. H. Li, Sci. Bull. 62, 46 (2017).CrossRefGoogle Scholar
  69. 69.
    G. Smith, and J. Yard, Science 321, 1812 (2008).ADSMathSciNetCrossRefGoogle Scholar
  70. 70.
    A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J. A. Smolin, and H. Weinfurter, Phys. Rev. A 52, 3457 (1995).ADSCrossRefGoogle Scholar
  71. 71.
    Y. Liu, G. L. Long, and Y. Sun, Int. J. Quantum Inform. 6, 447 (2008).CrossRefGoogle Scholar
  72. 72.
    M. Möttönen, J. J. Vartiainen, V. Bergholm, and M. M. Salomaa, Phys. Rev. Lett. 93, 130502 (2004).CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Low-Dimensional Quantum Physics and Department of PhysicsTsinghua UniversityBeijingChina
  2. 2.Tsinghua National Laboratory of Information Science and TechnologyBeijingChina
  3. 3.Collaborative Innovation Center of Quantum MatterBeijingChina

Personalised recommendations