Advertisement

A note on the Bloch representation of absolutely maximally entangled states

  • Bo Li
  • ShuHan Jiang
  • Shao-Ming Fei
  • XianQing Li-Jost
Letter to the Editor

References

  1. 1.
    M. A. Nielsen, and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000).zbMATHGoogle Scholar
  2. 2.
    N. Gisin, and H. Bechmann-Pasquinucci, Phys. Lett. A 246, 1 (1998).MathSciNetCrossRefADSGoogle Scholar
  3. 3.
    A. Higuchi, and A. Sudbery, Phys. Lett. A 273, 213 (2000).MathSciNetCrossRefADSGoogle Scholar
  4. 4.
    W. Helwig, W. Cui, J. I. Latorre, A. Riera, and H. K. Lo, Phys. Rev. A 86, 052335 (2012).CrossRefADSGoogle Scholar
  5. 5.
    W. Helwig, and W. Cui, arXiv: 1306.2536.Google Scholar
  6. 6.
    W. Helwig, arXiv: 1306.2879.Google Scholar
  7. 7.
    A. J. Scott, Phys. Rev. A 69, 052330 (2004).CrossRefADSGoogle Scholar
  8. 8.
    Z. Raissi, C. Gogolin, A. Riera, and A. Acín, arXiv: 1701.03359.Google Scholar
  9. 9.
    G. Nebe, E. M. Rains, and N. J. A. Sloane, Self-Dual Codes and Invariant Theory (Springer, Berlin-Heidelberg, 2006).zbMATHGoogle Scholar
  10. 10.
    M. Grassl, and M. Roetteler, Quantum MDS Codes over Small Fields: The Proceeding of 2015 IEEE International Symposium on Information Theory (ISIT), Hong Kong, (2015).CrossRefGoogle Scholar
  11. 11.
    A. R. Calderbank, E. M. Rains, P. M. Shor, and N. J. A. Sloane, IEEE Trans. Inform. Theor. 44, 1369 (1998).CrossRefGoogle Scholar
  12. 12.
    X. Zha, H. Song, J. Qi, D. Wang, and Q. Lan, J. Phys. A-Math. Theor. 45, 255302 (2012); X. Zha, C. Yuan, and Y. Zhang, Laser Phys. Lett. 10, 045201 (2013).CrossRefADSGoogle Scholar
  13. 13.
    D. Goyeneche, D. Alsina, J. I. Latorre, A. Riera, and K. życzkowski, Phys. Rev. A 92, 032316 (2015).CrossRefADSGoogle Scholar
  14. 14.
    J. I. Latorre, and G. Sierra, arXiv: 1502.06618.Google Scholar
  15. 15.
    F. Pastawski, B. Yoshida, D. Harlow, and J. Preskill, arXiv: 1503.06237.Google Scholar
  16. 16.
    L. Arnaud, and N. J. Cerf, Phys. Rev. A 87, 012319 (2013).CrossRefADSGoogle Scholar
  17. 17.
    D. Goyeneche, and K. życzkowski, Phys. Rev. A 90, 022316 (2014).CrossRefADSGoogle Scholar
  18. 18.
    K. Feng, L. Jin, C. Xing, and C. Yuan, arXiv: 1511.07992.Google Scholar
  19. 19.
    A. Bernal, Quant. Phys. Lett. 6, 1 (2017).CrossRefGoogle Scholar
  20. 20.
    G. Gour, and N. R. Wallach, J. Math. Phys. 51, 112201 (2010).MathSciNetCrossRefADSGoogle Scholar
  21. 21.
    A. Borras, A. R. Plastino, J. Batle, C. Zander, M. Casas, and A. Plastino, J. Phys. A-Math. Theor. 40, 13407 (2007).CrossRefADSGoogle Scholar
  22. 22.
    P. Facchi, G. Florio, U. Marzolino, G. Parisi, and S. Pascazio, J. Phys. A-Math. Theor. 43, 225303 (2010); P. Facchi, G. Florio, G. Parisi, and S. Pascazio, Phys. Rev. A 77, 060304 (2008).CrossRefADSGoogle Scholar
  23. 23.
    E. M. Rains, IEEE Trans. Inform. Theor. 44, 1388 (1998).CrossRefGoogle Scholar
  24. 24.
    E. M. Rains, IEEE Trans. Inform. Theor. 45, 2361 (1999).CrossRefGoogle Scholar
  25. 25.
    F. Huber, O. Gühne, and J. Siewert, Phys. Rev. Lett. 118, 200502 (2017).CrossRefADSGoogle Scholar
  26. 26.
    M. Hein, J. Eisert, and H. J. Briegel, Phys. Rev. A 69, 062311 (2004).MathSciNetCrossRefADSGoogle Scholar
  27. 27.
    F. E. S. Steinhoff, C. Ritz, N. I. Miklin, and O. Gühne, Phys. Rev. A 95, 052340 (2017).CrossRefADSGoogle Scholar
  28. 28.
    L. Chen, and D. L. Zhou, Sci. Rep. 6, 27135 (2016).CrossRefADSGoogle Scholar
  29. 29.
    F. Huber, C. Eltschka, J. Siewert, and O. Gühne, arXiv: 1708.062981 quant-ph.Google Scholar
  30. 30.
    S. Sen, M. R. Nath, T. K. Dey, and G. Gangopadhyay, Ann. Phys. 327, 224 (2012).CrossRefADSGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Bo Li
    • 1
    • 2
  • ShuHan Jiang
    • 2
    • 3
  • Shao-Ming Fei
    • 2
    • 4
  • XianQing Li-Jost
    • 2
  1. 1.School of Mathematics and Computer ScienceShangrao Normal UniversityShangraoChina
  2. 2.Max-Planck-Institute for Mathematics in the SciencesLeipzigGermany
  3. 3.School of PhysicsNankai UniversityTianjinChina
  4. 4.School of Mathematical SciencesCapital Normal UniversityBeijingChina

Personalised recommendations