NbN superconducting nanowire single photon detector with efficiency over 90% at 1550 nm wavelength operational at compact cryocooler temperature

  • WeiJun Zhang
  • LiXing You
  • Hao Li
  • Jia Huang
  • ChaoLin Lv
  • Lu Zhang
  • XiaoYu Liu
  • JunJie Wu
  • Zhen Wang
  • XiaoMing Xie
Article

Abstract

The rapid development of superconducting nanowire single-photon detectors over the past decade has led to numerous advances in quantum information technology. The record for the best system detection efficiency at an incident photon wavelength of 1550 nm is 93%. This performance was attained from a superconducting nanowire single-photon detector made of amorphous WSi; such detectors are usually operated at sub-Kelvin temperatures. In this study, we first demonstrate superconducting nanowire single-photon detectors made of polycrystalline NbN with system detection efficiency of 90.2% for 1550-nm-wavelength photons at 2.1 K, accessible with a compact cryocooler. The system detection efficiency saturated at 92.1% when the temperature was lowered to 1.8 K. We expect the results lighten the practical and high performance superconducting nanowire single-photon detectors to quantum information and other high-end applications.

Keywords

detection efficiency NbN superconducting nanowire single-photon detector (SNSPD) quantum information 

Supplementary material

11433_2017_9113_MOESM1_ESM.pdf (3.1 mb)
Supplementary material, approximately 3210 KB.

References

  1. 1.
    M. Giustina, M. A. M. Versteegh, S. Wengerowsky, J. Handsteiner, A. Hochrainer, K. Phelan, F. Steinlechner, J. Kofler, J. Å. Larsson, C. Abellán, W. Amaya, V. Pruneri, M. W. Mitchell, J. Beyer, T. Gerrits, A. E. Lita, L. K. Shalm, S. W. Nam, T. Scheidl, R. Ursin, B. Wittmann, and A. Zeilinger, Phys. Rev. Lett. 115, 250401 (2015), arXiv: 1511.03190.ADSCrossRefGoogle Scholar
  2. 2.
    L. K. Shalm, E. Meyer-Scott, B. G. Christensen, P. Bierhorst, M. A. Wayne, M. J. Stevens, T. Gerrits, S. Glancy, D. R. Hamel, M. S. Allman, K. J. Coakley, S. D. Dyer, C. Hodge, A. E. Lita, V. B. Verma, C. Lambrocco, E. Tortorici, A. L. Migdall, Y. Zhang, D. R. Kumor, W. H. Farr, F. Marsili, M. D. Shaw, J. A. Stern, C. Abellán, W. Amaya, V. Pruneri, T. Jennewein, M. W. Mitchell, P. G. Kwiat, J. C. Bienfang, R. P. Mirin, E. Knill, and S. W. Nam, Phys. Rev. Lett. 115, 250402 (2015), arXiv: 1511.03189.ADSCrossRefGoogle Scholar
  3. 3.
    Q. C. Sun, Y. L. Mao, S. J. Chen, W. Zhang, Y. F. Jiang, Y. B. Zhang, W. J. Zhang, S. Miki, T. Yamashita, H. Terai, X. Jiang, T. Y. Chen, L. X. You, X. F. Chen, Z. Wang, J. Y. Fan, Q. Zhang, and J. W. Pan, Nat. Photon 10, 671 (2016).ADSCrossRefGoogle Scholar
  4. 4.
    Y. L. Tang, H. L. Yin, S. J. Chen, Y. Liu, W. J. Zhang, X. Jiang, L. Zhang, J. Wang, L. X. You, J. Y. Guan, D. X. Yang, Z. Wang, H. Liang, Z. Zhang, N. Zhou, X. Ma, T. Y. Chen, Q. Zhang, and J. W. Pan, Phys. Rev. Lett. 113, 190501 (2014), arXiv: 1407.8012.ADSCrossRefGoogle Scholar
  5. 5.
    E. Knill, R. Laflamme, and G. J. Milburn, Nature 409, 46 (2001).Google Scholar
  6. 6.
    R. H. Hadfield, G. Johansson, Superconducting Devices in Quantum Optics (Springer, Berlin, 2016).CrossRefGoogle Scholar
  7. 7.
    J. Zhang, M. A. Itzler, H. Zbinden, and J. W. Pan, Light Sci Appl 4, e286 (2015).CrossRefGoogle Scholar
  8. 8.
    X. Hu, Y. Cheng, C. Gu, X. Zhu, and H. Liu, Sci. Bull. 60, 1980 (2015).CrossRefGoogle Scholar
  9. 9.
    A. E. Lita, A. J. Miller, and S. W. Nam, Opt. Express 16, 3032 (2008).ADSCrossRefGoogle Scholar
  10. 10.
    F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, Nat. Photon 7, 210 (2013), arXiv: 1209.5774.ADSCrossRefGoogle Scholar
  11. 11.
    V. B. Verma, B. Korzh, F. Bussières, R. D. Horansky, S. D. Dyer, A. E. Lita, I. Vayshenker, F. Marsili, M. D. Shaw, H. Zbinden, R. P. Mirin, and S. W. Nam, Opt. Express 23, 33792 (2015), arXiv: 1504.02793.ADSCrossRefGoogle Scholar
  12. 12.
    S. N. Dorenbos, P. Forn-Díaz, T. Fuse, A. H. Verbruggen, T. Zijlstra, T. M. Klapwijk, and V. Zwiller, Appl. Phys. Lett. 98, 251102 (2011).ADSCrossRefGoogle Scholar
  13. 13.
    A. Engel, A. Aeschbacher, K. Inderbitzin, A. Schilling, K. Il’in, M. Hofherr, M. Siegel, A. Semenov, and H. W. Hübers, Appl. Phys. Lett. 100, 062601 (2012), arXiv: 1110.4576.ADSCrossRefGoogle Scholar
  14. 14.
    Y. P. Korneeva, M. Y. Mikhailov, Y. P. Pershin, N. N. Manova, A. V. Divochiy, Y. B. Vakhtomin, A. A. Korneev, K. V. Smirnov, A. G. Sivakov, A. Y. Devizenko, and G. N. Goltsman, Supercond. Sci. Technol. 27, 095012 (2014), arXiv: 1309.7074.ADSCrossRefGoogle Scholar
  15. 15.
    A. Semenov, A. Engel, H. W. Hübers, K. Il’in, and M. Siegel, Eur. Phys. J. B 47, 495 (2005).ADSCrossRefGoogle Scholar
  16. 16.
    F. Marsili, F. Najafi, E. Dauler, F. Bellei, X. Hu, M. Csete, R. J. Molnar, and K. K. Berggren, Nano Lett. 11, 2048 (2011), arXiv: 1012.4149.ADSCrossRefGoogle Scholar
  17. 17.
    J. J. Renema, R. Gaudio, Q. Wang, Z. Zhou, A. Gaggero, F. Mattioli, R. Leoni, D. Sahin, M. J. A. de Dood, A. Fiore, and M. P. van Exter, Phys. Rev. Lett. 112, 117604 (2014).ADSCrossRefGoogle Scholar
  18. 18.
    D. Rosenberg, A. J. Kerman, R. J. Molnar, and E. A. Dauler, Opt. Express 21, 1440 (2013).ADSCrossRefGoogle Scholar
  19. 19.
    T. Yamashita, S. Miki, H. Terai, and Z. Wang, Opt. Express 21, 27177 (2013), arXiv: 1305.2672.ADSCrossRefGoogle Scholar
  20. 20.
    S. Chen, L. You, W. Zhang, X. Yang, H. Li, L. Zhang, Z. Wang, and X. Xie, Opt. Express 23, 10786 (2015), arXiv: 1504.04713.ADSCrossRefGoogle Scholar
  21. 21.
    S. Miki, M. Yabuno, T. Yamashita, and H. Terai, Opt. Express 25, 6796 (2017), arXiv: 1701.07247.ADSCrossRefGoogle Scholar
  22. 22.
    L. Zhang, C. Wan, M. Gu, R. Xu, S. Zhang, L. Kang, J. Chen, and P. Wu, Sci. Bull. 60, 1434 (2015).CrossRefGoogle Scholar
  23. 23.
    C. Delacour, J. Claudon, J. P. Poizat, B. Pannetier, V. Bouchiat, R. Espiau de Lamaestre, J. C. Villegier, M. Tarkhov, A. Korneev, B. Voronov, and G. Gol’tsman, Appl. Phys. Lett. 90, 191116 (2007).ADSCrossRefGoogle Scholar
  24. 24.
    A. Semenov, B. Günther, U. Böttger, H. W. Hübers, H. Bartolf, A. Engel, A. Schilling, K. Ilin, M. Siegel, R. Schneider, D. Gerthsen, and N. A. Gippius, Phys. Rev. B 80, 054510 (2009).ADSCrossRefGoogle Scholar
  25. 25.
    K. Smirnov, Y. Vachtomin, A. Divochiy, A. Antipov, and G. Goltsman, Appl. Phys. Express 8, 022501 (2015).ADSCrossRefGoogle Scholar
  26. 26.
    S. V. Polyakov, and A. L. Migdall, Opt. Express 15, 1390 (2007).ADSCrossRefGoogle Scholar
  27. 27.
    J. Bardeen, Rev. Mod. Phys. 34, 667 (1962).ADSCrossRefGoogle Scholar
  28. 28.
    D. Henrich, P. Reichensperger, M. Hofherr, J. M. Meckbach, K. Il’in, M. Siegel, A. Semenov, A. Zotova, and D. Y. Vodolazov, Phys. Rev. B 86, 144504 (2012), arXiv: 1204.0616.ADSCrossRefGoogle Scholar
  29. 29.
    H. L. Yin, T. Y. Chen, Z. W. Yu, H. Liu, L. X. You, Y. H. Zhou, S. J. Chen, Y. Mao, M. Q. Huang, W. J. Zhang, H. Chen, M. J. Li, D. Nolan, F. Zhou, X. Jiang, Z. Wang, Q. Zhang, X. B. Wang, and J. W. Pan, Phys. Rev. Lett. 117, 190501 (2016), arXiv: 1606.06821.ADSCrossRefGoogle Scholar
  30. 30.
    X. L. Wang, L. K. Chen, W. Li, H. L. Huang, C. Liu, C. Chen, Y. H. Luo, Z. E. Su, D. Wu, Z. D. Li, H. Lu, Y. Hu, X. Jiang, C. Z. Peng, L. Li, N. L. Liu, Y. A. Chen, C. Y. Lu, and J. W. Pan, Phys. Rev. Lett. 117, 210502 (2016), arXiv: 1605.08547.ADSCrossRefGoogle Scholar
  31. 31.
    W. J. Zhang, L. X. You, H. Li, J. Huang, C. L. Lv, L. Zhang, X. Y. Liu, J. J. Wu, Z. Wang, and X. M. Xie, arXiv: 1609.00429.Google Scholar
  32. 32.
    I. E. Zadeh, W. N. L. Johannes, R. B. M. Gourgues, V. Steinmetz, G. Bulgarini, S. M. Dobrovolskiy, V. Zwiller, and S. N. Dorenbos, arXiv: 1611.02726.Google Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • WeiJun Zhang
    • 1
    • 2
  • LiXing You
    • 1
    • 2
  • Hao Li
    • 1
    • 2
  • Jia Huang
    • 1
    • 2
  • ChaoLin Lv
    • 1
    • 2
  • Lu Zhang
    • 1
    • 2
  • XiaoYu Liu
    • 1
    • 2
  • JunJie Wu
    • 1
    • 2
  • Zhen Wang
    • 1
    • 2
  • XiaoMing Xie
    • 1
    • 2
  1. 1.State Key Lab of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information TechnologyChinese Academy of SciencesShanghaiChina
  2. 2.CAS Center for Excellence in Superconducting ElectronicsShanghaiChina

Personalised recommendations