Nuclear structure of 76Ge from proton-neutron interacting boson model calculations

  • DaLi ZhangEmail author
  • ChengFu Mu


The properties of low-lying states in 76Ge, especially the characteristics of the mixed-symmetry states, have been investigated within the neutron-proton interacting boson model (IBM-2). By considering the relative energy of d proton boson to be different from that of neutron boson, the low-lying positive parity levels and M1, E2 transition strengths have been calculated. The IBM-2 calculated results are in good agreement with the experimental data. Particularly, the mixed-symmetry states have been reproduced quite well. The calculation and systematic analysis demonstrated that the collective character of 76Ge lies closest to the SU*πv(3), with some possible Oπv(6) dynamic symmetry in IBM-2 viewpoint.


76Ge energy levels E2 and M1 transition strengths IBM-2 


  1. 1.
    A. Hennig, M. Spieker, V. Werner, T. Ahn, V. Anagnostatou, N. Cooper, V. Derya, M. Elvers, J. Endres, P. Goddard, A. Heinz, R. O. Hughes, G. Ilie, M. N. Mineva, P. Petkov, S. G. Pickstone, N. Pietralla, D. Radeck, T. J. Ross, D. Savran, and A. Zilges, Phys. Rev. C 90, 051302(R) (2014).ADSCrossRefGoogle Scholar
  2. 2.
    M. Sambataro, Nucl. Phys. A 380, 365 (1982).ADSCrossRefGoogle Scholar
  3. 3.
    F. Iachello, and A. Arima, The Interacting Boson Model (Cambridge University Press, Cambridge, 1987).CrossRefGoogle Scholar
  4. 4.
    P. Van Isacker, K. Heyde, J. Jolie, and A. Sevrin, Ann. Phys. 171, 253 (1986).ADSCrossRefGoogle Scholar
  5. 5.
    H. Z. Sun, G. L. Long, J. Y. Zhang, and Q. Z. Han, Commun. Theor. Phys. 29, 411 (1998).CrossRefGoogle Scholar
  6. 6.
    N. Pietralla, P. Vonbrentano, and A. Lisetskiy, Prog. Part. Nucl. Phys. 60, 225 (2008).ADSCrossRefGoogle Scholar
  7. 7.
    K. Heyde, P. von Neumann-Cosel, and A. Richter, Rev. Mod. Phys. 82, 2365 (2010).ADSCrossRefGoogle Scholar
  8. 8.
    N. L. Iudice, V. Y. Ponomarev, C. Stoyanov, A. V. Sushkov, and V. V. Voronov, J. Phys. G-Nucl. Part. Phys. 39, 043101 (2012).ADSCrossRefGoogle Scholar
  9. 9.
    F. H. Al-Khudair, Phys. Rev. C 91, 054304 (2015).ADSCrossRefGoogle Scholar
  10. 10.
    D. L. Zhang, S. Q. Yuan, and B. G. Ding, Chin. Phys. C 39, 074102 (2015).ADSCrossRefGoogle Scholar
  11. 11.
    M. Harper, and L. Zamick, Phys. Rev. C 91, 054310 (2015).ADSCrossRefGoogle Scholar
  12. 12.
    A. V. Voinov, and S. M. Grimes, Phys. Rev. C 92, 064308 (2015).ADSCrossRefGoogle Scholar
  13. 13.
    J. F. Zhang, X. W. Li, and Y. S. Li, Nucl. Phys. A 951, 31 (2016).ADSCrossRefGoogle Scholar
  14. 14.
    M. Scheck, P. A. Butler, C. Fransen, V. Werner, and S. W. Yates, Phys. Rev. C 81, 064305 (2010).ADSCrossRefGoogle Scholar
  15. 15.
    R. J. Casperson, V. Werner, and S. Heinze, Phys. Lett. B 721, 51 (2013).ADSCrossRefGoogle Scholar
  16. 16.
    D. L. Zhang, and C. F. Mu, Sci. China-Phys. Mech. Astron. 60, 042011 (2017).ADSCrossRefGoogle Scholar
  17. 17.
    R. Schwengner, S. Frauendorf, and B. A. Brown, Phys. Rev. Lett. 118, 092502 (2017).ADSCrossRefGoogle Scholar
  18. 18.
    G. L. Long, Y. S. Li, C. C. Tu, L. Tian, H. Y. Ji, S. J. Zhu, E. G. Zhao, F. Y. Liu, J. F. Zhang, and D. Ruan, Commun. Theor. Phys. 37, 75 (2002).CrossRefGoogle Scholar
  19. 19.
    S. Mukhopadhyay, B. P. Crider, B. A. Brown, S. F. Ashley, A. Chakraborty, A. Kumar, M. T. McEllistrem, E. E. Peters, F. M. Prados-Estevez, and S. W. Yates, Phys. Rev. C 95, 014327 (2017).ADSCrossRefGoogle Scholar
  20. 20.
    H. Iwasaki, S. Michimasa, M. Niikura, M. Tamaki, N. Aoi, H. Sakurai, S. Shimoura, S. Takeuchi, S. Ota, M. Honma, T. K. Onishi, E. Takeshita, H. J. Ong, H. Baba, Z. Elekes, T. Fukuchi, Y. Ichikawa, M. Ishihara, N. Iwasa, S. Kanno, R. Kanungo, S. Kawai, T. Kubo, K. Kurita, T. Motobayashi, A. Saito, Y. Satou, H. Suzuki, M. K. Suzuki, Y. Togano, and Y. Yanagisawa, Phys. Rev. C 78, 021304(R) (2008).ADSCrossRefGoogle Scholar
  21. 21.
    E. Padilla-Rodal, A. Galindo-Uribarri, C. Baktash, J. C. Batchelder, J. R. Beene, R. Bijker, B. A. Brown, O. Castanos, B. Fuentes, J. G. del Campo, P. A. Hausladen, Y. Larochelle, A. F. Lisetskiy, P. E. Mueller, D. C. Radford, D. W. Stracener, J. P. Urrego, R. L. Varner, and C. H. Yu, Phys. Rev. Lett. 94, 122501 (2005).ADSCrossRefGoogle Scholar
  22. 22.
    A. Gottardo, D. Verney, C. Delafosse, F. Ibrahim, B. Roussiere, C. Sotty, S. Roccia, C. Andreoiu, C. Costache, M. C. Delattre, I. Deloncle, A. Etile, S. Franchoo, C. Gaulard, J. Guillot, M. Lebois, M. Mac-Cormick, N. Marginean, R. Marginean, I. Matea, C. Mihai, I. Mitu, L. Olivier, C. Portail, L. Qi, L. Stan, D. Testov, J. Wilson, and D. T. Yordanov, Phys. Rev. Lett. 116, 182501 (2016).ADSCrossRefGoogle Scholar
  23. 23.
    Y. Toh, C. J. Chiara, E. A. McCutchan, W. B. Walters, R. V. F. Janssens, M. P. Carpenter, S. Zhu, R. Broda, B. Fornal, B. P. Kay, F. G. Kondev, W. Krolas, T. Lauritsen, C. J. Lister, T. Pawlat, D. Seweryniak, I. Stefanescu, N. J. Stone, J. Wrzesinski, K. Higashiyama, and N. Yoshinaga, Phys. Rev. C 87, 041304 (2013).ADSCrossRefGoogle Scholar
  24. 24.
    D. L. Zhang, and B. G. Ding, Chin. Phys. Lett. 30, 122101 (2013).CrossRefGoogle Scholar
  25. 25.
    S. T. Hsieh, H. C. Chiang, and D. S. Chuu, Phys. Rev. C 46, 195 (1992).ADSCrossRefGoogle Scholar
  26. 26.
    P. D. Duval, D. Goutte, and M. Vergnes, Phys. Lett. B 124, 297 (1983).ADSCrossRefGoogle Scholar
  27. 27.
    E. Padilla-Rodal, O. Castanos, R. Bijker, and A. Galindo-Uribarri, Rev. Mex. Fis. S52, 57–62 (2006), arXiv: nucl-th/0601060.Google Scholar
  28. 28.
    J. P. Elliott, J. A. Evans, V. S. Lac, and G. L. Long, Nucl. Phys. A 609, 1 (1996).ADSCrossRefGoogle Scholar
  29. 29.
    P. Cejnar, J. Jolie, and R. F. Casten, Rev. Mod. Phys. 82, 2155 (2010).ADSCrossRefGoogle Scholar
  30. 30.
    T. Otsuka, Hyperfine Interact. 75, 23 (1992).ADSCrossRefGoogle Scholar
  31. 31.
    N. Lo Iudice, C. Stoyanov, and D. Tarpanov, Phys. Rev. C 77, 044310 (2008).ADSCrossRefGoogle Scholar
  32. 32.
    G. H. Bhat, W. A. Dar, J. A. Sheikh, and Y. Sun, Phys. Rev. C 89, 014328 (2014).ADSCrossRefGoogle Scholar
  33. 33.
    J. J. Sun, Z. Shi, X. Q. Li, H. Hua, C. Xu, Q. B. Chen, S. Q. Zhang, C. Y. Song, J. Meng, X. G. Wu, S. P. Hu, H. Q. Zhang, W. Y. Liang, F. R. Xu, Z. H. Li, G. S. Li, C. Y. He, Y. Zheng, Y. L. Ye, D. X. Jiang, Y. Y. Cheng, C. He, R. Han, Z. H. Li, C. B. Li, H. W. Li, J. L. Wang, J. J. Liu, Y. H. Wu, P. W. Luo, S. H. Yao, B. B. Yu, X. P. Cao, and H. B. Sun, Phys. Lett. B 734, 308 (2014).ADSCrossRefGoogle Scholar
  34. 34.
    T. Niksic, P. Marevic, and D. Vretenar, Phys. Rev. C 89, 044325 (2014).ADSCrossRefGoogle Scholar
  35. 35.
    H. Dejbakhsh, D. Latypov, G. Ajupova, and S. Shlomo, Phys. Rev. C 46, 2326 (1992).ADSCrossRefGoogle Scholar
  36. 36.
    D. L. Zhang, and B. G. Ding, Sci. China-Phys. Mech. Astron. 57, 447 (2014).ADSCrossRefGoogle Scholar
  37. 37.
    D. L. Zhang, and C. F. Mu, Chin. Phys. Lett. 33, 102102 (2016).ADSCrossRefGoogle Scholar
  38. 38.
    T. Otsuka, and N. Yoshida, The IBA-2 Computer Program NPBOS, Technical Report (University of Tokyo, 1985).Google Scholar
  39. 39.
    A. Giannatiempo, A. Nannini, and P. Sona, Phys. Rev. C 58, 3316 (1998).ADSCrossRefGoogle Scholar
  40. 40.
    A. Sevrin, K. Heyde, and J. Jolie, Phys. Rev. C 36, 2621 (1987).ADSCrossRefGoogle Scholar
  41. 41.
    M. A. Caprio, and F. Iachello, Ann. Phys. 318, 454 (2005).ADSCrossRefGoogle Scholar
  42. 42.
    K. Nomura, N. Shimizu, D. Vretenar, T. Nikšić, and T. Otsuka, Phys. Rev. Lett. 108, 132501 (2012).ADSCrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of PhysicsHuzhou UniversityHuzhouChina

Personalised recommendations