More than six hundred new families of Newtonian periodic planar collisionless three-body orbits

Article

Abstract

The famous three-body problem can be traced back to Isaac Newton in the 1680s. In the 300 years since this “three-body problem” was first recognized, only three families of periodic solutions had been found, until 2013 when Šuvakov and Dmitrašinović [Phys. Rev. Lett. 110, 114301 (2013)] made a breakthrough to numerically find 13 new distinct periodic orbits, which belong to 11 new families of Newtonian planar three-body problem with equal mass and zero angular momentum. In this paper, we numerically obtain 695 families of Newtonian periodic planar collisionless orbits of three-body system with equal mass and zero angular momentum in case of initial conditions with isosceles collinear configuration, including the well-known figure-eight family found by Moore in 1993, the 11 families found by Šuvakov and Dmitrašinović in 2013, and more than 600 new families that have never been reported, to the best of our knowledge. With the definition of the average period T = T/Lf, where Lf is the length of the so-called “free group element”, these 695 families suggest that there should exist the quasi Kepler’s third law T* ≈ 2:433 ± 0:075 for the considered case, where T ≈ = T |E|3/2 is the scale-invariant average period and E is its total kinetic and potential energy, respectively. The movies of these 695 periodic orbits in the real space and the corresponding close curves on the “shape sphere” can be found via the website: http://numericaltank.sjtu.edu.cn/three-body/three-body.htm.

Keywords

three-body problem periodic orbits clean numerical simulation (CNS) 

Notes

Acknowledgments

This work was partly supported by the National Natural Science Foundation of China (Grant No. 11432009). This work was carried out on TH-2 at National Supercomputer Centre in Guangzhou, China.

References

  1. 1.
    Z. E. Musielak, and B. Quarles, Rep. Prog. Phys. 77, 065901 (2014).ADSCrossRefGoogle Scholar
  2. 2.
    H. Poincaré, Acta Math. 13, 5 (1890).MathSciNetCrossRefGoogle Scholar
  3. 3.
    E. N. Lorenz, J. Atmos. Sci. 20, 130 (1963).ADSCrossRefGoogle Scholar
  4. 4.
    M. Šuvakov, and V. Dmitrašinović, Phys. Rev. Lett. 110, 114301 (2013).CrossRefGoogle Scholar
  5. 5.
    R. Broucke, Celestial Mech. 12, 439 (1975).ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    J. D. Hadjidemetriou, Celestial Mech. 12, 255 (1975).ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    J. D. Hadjidemetriou, and T. Christides, Celestial Mech. 12, 175 (1975).ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    M. Hénon, Celestial Mech. 13, 267 (1976).ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    M. Hénon, Celestial Mech. 15, 243 (1977).ADSCrossRefGoogle Scholar
  10. 10.
    C. Moore, Phys. Rev. Lett. 70, 3675 (1993).ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    A. Chenciner, and R. Montgomery, Ann. Math. 152, 881 (2000).MathSciNetCrossRefGoogle Scholar
  12. 12.
    M. Nauenberg, Phys. Lett. A 292, 93 (2001).ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    A. Chenciner, J. Féjoz, and R. Montgomery, Nonlinearity 18, 1407 (2005).ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    R. Broucke, A. Elipe, and A. Riaguas, Chaos Soliton. Fract. 30, 513 (2006).ADSCrossRefGoogle Scholar
  15. 15.
    M. Nauenberg, Celestial Mech. Dyn. Astr. 97, 1 (2007).ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    X. M. Li, and S. J. Liao, Sci. China-Phys. Mech. Astron. 57, 2121 (2014).ADSCrossRefGoogle Scholar
  17. 17.
    A. Hudomal, New Periodic Solutions to the Three-body Problem and Gravitational Waves, Dissertation for Master Degree (University of Belgrade, Serbia, 2015).Google Scholar
  18. 18.
    V. Dmitrašinović, and M. Šuvakov, Phys. Lett. A 379, 1939 (2015).ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    M. R. Janković, and V. Dmitrašinović, Phys. Rev. Lett. 116, 064301 (2016).ADSCrossRefGoogle Scholar
  20. 20.
    M. Šuvakov, and V. Dmitrašinović, Am. J. Phys. 82, 609 (2014).CrossRefGoogle Scholar
  21. 21.
    E. Hairer, S. P. Nørsett, and G. Wanner, Solving Ordinary Differential Equations I: Nonstiff Problems (Springer-Verlag, Berlin, 1993).MATHGoogle Scholar
  22. 22.
    S. C. Farantos, J. Mol. Struc.-Theochem 341, 91 (1995).CrossRefGoogle Scholar
  23. 23.
    M. Lara, and J. Peláez, Astron. Astrophys. 389, 692 (2002).ADSCrossRefGoogle Scholar
  24. 24.
    A. Abad, R. Barrio, and Dena, Phys. Rev. E 84, 016701 (2011).ADSCrossRefGoogle Scholar
  25. 25.
    W. G. Hoover, and C. G. Hoover, Comput. Meth. Sci. Tech. 21, 109 (2015).CrossRefGoogle Scholar
  26. 26.
    S. Liao, Tellus A 61, 550 (2008).ADSCrossRefGoogle Scholar
  27. 27.
    S. Liao, Commun. Nonlinear Sci. Numer. Simul. 19, 601 (2014).ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    S. Liao, Chaos Soliton. Fract. 47, 1 (2013).ADSCrossRefGoogle Scholar
  29. 29.
    S. J. Liao, and P. F. Wang, Sci. China-Phys. Mech. Astron. 57, 330 (2014).ADSCrossRefGoogle Scholar
  30. 30.
    S. Liao, and X. Li, Int. J. Bifurcat. Chaos 25, 1530023 (2015).CrossRefGoogle Scholar
  31. 31.
    Z. L. Lin, L. P. Wang, and S. J. Liao, Sci. China-Phys. Mech. Astron. 60, 014712 (2017).ADSCrossRefGoogle Scholar
  32. 32.
    D. Barton, Comput. J. 14, 243 (1971).CrossRefGoogle Scholar
  33. 33.
    G. Corliss, and Y. F. Chang, ACM Trans. Math. Softw. 8, 114 (1982).CrossRefGoogle Scholar
  34. 34.
    Y. F. Chang, and G. Corliss, Comput. Math. Appl. 28, 209 (1994).MathSciNetCrossRefGoogle Scholar
  35. 35.
    R. Barrio, F. Blesa, and M. Lara, Comput. Math. Appl. 50, 93 (2005).MathSciNetCrossRefGoogle Scholar
  36. 36.
    O. Portilho, Comput. Phys. Commun. 59, 345 (1990).ADSCrossRefGoogle Scholar
  37. 37.
    D. Viswanath, Physica D 190, 115 (2004).ADSMathSciNetCrossRefGoogle Scholar
  38. 38.
    R. Montgomery, Nonlinearity 11, 363 (1998).ADSMathSciNetCrossRefGoogle Scholar
  39. 39.
    X. Li, and S. Liao, arXiv: 1705.00527.Google Scholar
  40. 40.
    D. Rose, Geometric Phase and Periodic Orbits of the Equalmass, Planar Three-body Problem with Vanishing Angular Momentum, Dissertation for Doctoral Degree (University of Sydney, Sydney, 2016).Google Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.School of Naval Architecture, Ocean and Civil EngineeringShanghai Jiaotong UniversityShanghaiChina
  2. 2.MoE Key Laboratory in Scientific and Engineering ComputingShanghaiChina

Personalised recommendations