The stress-velocity relationship of twinning partial dislocations and the phonon-based physical interpretation

  • YuJie WeiEmail author
  • ShenYou Peng


The dependence of dislocation mobility on stress is the fundamental ingredient for the deformation in crystalline materials. Strength and ductility, the two most important properties characterizing mechanical behavior of crystalline metals, are in general governed by dislocation motion. Recording the position of a moving dislocation in a short time window is still challenging, and direct observations which enable us to deduce the speed-stress relationship of dislocations are still missing. Using large-scale molecular dynamics simulations, we obtain the motion of an obstacle-free twinning partial dislocation in face centred cubic crystals with spatial resolution at the angstrom scale and picosecond temporal information. The dislocation exhibits two limiting speeds: the first is subsonic and occurs when the resolved shear stress is on the order of hundreds of megapascal. While the stress is raised to gigapascal level, an abrupt jump of dislocation velocity occurs, from subsonic to supersonic regime. The two speed limits are governed respectively by the local transverse and longitudinal phonons associated with the stressed dislocation, as the two types of phonons facilitate dislocation gliding at different stress levels.


dislocation mobility transverse and longitudinal phonons subsonic and supersonic velocity stress-velocity relationship molecular dynamics 

Supplementary material

Supplementary material, approximately 1.95 MB.

Supplementary material, approximately 1.79 MB.

Supplementary material, approximately 1.95 MB.

Supplementary material, approximately 1.73 MB.


  1. 1.
    G. I. Taylor, Proc. R. Soc. A 145, 362 (1934).ADSCrossRefGoogle Scholar
  2. 2.
    M. Polanyi, Z. Physik 89, 660 (1934).ADSCrossRefGoogle Scholar
  3. 3.
    E. Orowan, Z. Physik 89, 605 (1934).ADSCrossRefGoogle Scholar
  4. 4.
    M. A. Meyer, Dynamic Behavior of Materials (John Wiley & Sons Inc., Hoboken, 1994), p. 323.CrossRefGoogle Scholar
  5. 5.
    A. S. Argon, Strengthening Mechanisms in Crystal Plasticity (Oxford University Press, Oxford, 2007).CrossRefGoogle Scholar
  6. 6.
    A. J. Rosakis, O. Samudrala, and D. Coker, Science 284, 1337 (1999).ADSCrossRefGoogle Scholar
  7. 7.
    P. Gumbsch, and H. Gao, Science 283, 965 (1999).ADSCrossRefGoogle Scholar
  8. 8.
    J. R. Rice, J. Mech. Phys. Solids 40, 239 (1992).ADSCrossRefGoogle Scholar
  9. 9.
    C. C. Chen, C. Zhu, E. R. White, C. Y. Chiu, M. C. Scott, B. C. Regan, L. D. Marks, Y. Huang, and J. Miao, Nature 496, 74 (2013).ADSCrossRefGoogle Scholar
  10. 10.
    J. N. Clark, J. Ihli, A. S. Schenk, Y. Y. Kim, A. N. Kulak, J. M. Campbell, G. Nisbet, F. C. Meldrum, and I. K. Robinson, Nat. Mater. 14, 780 (2015), arXiv: 1501.02853.ADSCrossRefGoogle Scholar
  11. 11.
    W. G. Johnston, and J. J. Gilman, J. Appl. Phys. 30, 129 (1959).ADSCrossRefGoogle Scholar
  12. 12.
    S. Schäfer, Phys. Stat. Solidi 19, 297 (1967).ADSCrossRefGoogle Scholar
  13. 13.
    F. C. Frank, Proc. Phys. Soc. A 62, 131 (1949).ADSCrossRefGoogle Scholar
  14. 14.
    J. D. Eshelby, Proc. Phys. Soc. A 62, 307 (1949).ADSCrossRefGoogle Scholar
  15. 15.
    Y. Y. Earmme, and J. H. Weiner, J. Appl. Phys. 45, 603 (1974).ADSCrossRefGoogle Scholar
  16. 16.
    D. L. Olmsted, L. G. Hectorjr, W. A. Curtin, and R. J. Clifton, Model. Simul. Mater. Sci. Eng. 13, 371 (2005).ADSCrossRefGoogle Scholar
  17. 17.
    Z. Jin, H. Gao, and P. Gumbsch, Phys. Rev. B 77, 094303 (2008).ADSCrossRefGoogle Scholar
  18. 18.
    H. Tsuzuki, P. S. Branicio, and J. P. Rino, Acta Mater. 57, 1843 (2009).CrossRefGoogle Scholar
  19. 19.
    P. Rosakis, Phys. Rev. Lett. 86, 95 (2001).ADSCrossRefGoogle Scholar
  20. 20.
    V. Nosenko, S. Zhdanov, and G. Morfill, Phys. Rev. Lett. 99, 025002 (2007), arXiv: 0709.1782.ADSCrossRefGoogle Scholar
  21. 21.
    E. Faran, and D. Shilo, Phys. Rev. Lett. 104, 155501 (2010).ADSCrossRefGoogle Scholar
  22. 22.
    V. Nosenko, G. E. Morfill, and P. Rosakis, Phys. Rev. Lett. 106, 155002 (2011), arXiv: 1105.0614.ADSCrossRefGoogle Scholar
  23. 23.
    J. J. Gilman, Metall. Mat. Trans. A 31, 811 (2000).CrossRefGoogle Scholar
  24. 24.
    W. F. Greenman, T. Vreeland Jr., and D. S. Wood, J. Appl. Phys. 38, 3595 (1967).ADSCrossRefGoogle Scholar
  25. 25.
    K. Yasutake, S. Shimizu, M. Umeno, and H. Kawabe, J. Appl. Phys. 61, 940 (1987).ADSCrossRefGoogle Scholar
  26. 26.
    F. F. Abraham, R. Walkup, H. Gao, M. Duchaineau, T. Diaz de La Rubia, and M. Seager, Proc. Natl. Acad. Sci. USA 99, 5783 (2002).ADSCrossRefGoogle Scholar
  27. 27.
    F. F. Abraham, R. Walkup, H. Gao, M. Duchaineau, T. Diaz de La Rubia, and M. Seager, Proc. Natl. Acad. Sci. USA 99, 5777 (2002).ADSCrossRefGoogle Scholar
  28. 28.
    S. Yip, Nat. Mater. 3, 11 (2004).ADSCrossRefGoogle Scholar
  29. 29.
    M. J. Buehler, and H. J. Gao, Nature 439, 307 (2006).ADSCrossRefGoogle Scholar
  30. 30.
    T. Zhu, J. Li, A. Samanta, A. Leach, and K. Gall, Phys. Rev. Lett. 100, 025502 (2008).ADSCrossRefGoogle Scholar
  31. 31.
    X. Li, Y. Wei, L. Lu, K. Lu, and H. Gao, Nature 464, 877 (2010).ADSCrossRefGoogle Scholar
  32. 32.
    J. P. Hirth, and J. Lothe, Theory of Dislocations (Krieger Publishing Company, Malabar, 1982).zbMATHGoogle Scholar
  33. 33.
    N. Bhate, R. J. Clifton, and R. Phillips, AIP Conf. Proc. 620, 339 (2002).ADSCrossRefGoogle Scholar
  34. 34.
    S. Plimpton, J. Comp. Phys. 117, 1 (1995).ADSCrossRefGoogle Scholar
  35. 35.
    M. S. Daw, and M. I. Baskes, Phys. Rev. B 29, 6443 (1984).ADSCrossRefGoogle Scholar
  36. 36.
    Y. Mishin, M. J. Mehl, D. A. Papaconstantopoulos, A. F. Voter, and J. D. Kress, Phys. Rev. B 63, 224106 (2001).ADSCrossRefGoogle Scholar
  37. 37.
    X. W. Zhou, H. N. G. Wadley, R. A. Johnson, D. J. Larson, N. Tabat, A. Cerezo, A. K. Petford-Long, G. D. W. Smith, P. H. Clifton, R. L. Martens, and T. F. Kelly, Acta Mater. 49, 4005 (2001).CrossRefGoogle Scholar
  38. 38.
    S. M. Foiles, M. I. Baskes, and M. S. Daw, Phys. Rev. B 33, 7983 (1986).ADSCrossRefGoogle Scholar
  39. 39.
    R. Peierls, Proc. Phys. Soc. 52, 34 (1940).ADSCrossRefGoogle Scholar
  40. 40.
    F. R. N. Nabarro, Mater. Sci. Eng.-A 234-236, 67 (1997).CrossRefGoogle Scholar
  41. 41.
    J. A. Gorman, D. S. Wood, and T. Vreeland Jr., J. Appl. Phys. 40, 833 (1969).ADSCrossRefGoogle Scholar
  42. 42.
    J. J. Gilman, Micromechanics of Flow in Solids (McGraw-Hill, New York, 1969).Google Scholar
  43. 43.
    T. Ninomiya, J. Phys. Soc. Jpn. 25, 830 (1968).ADSCrossRefGoogle Scholar
  44. 44.
    J. Weertman, and J. R. Weertman, Moving Dislocations, edited by F. R. N. Nabarro (North-Holland Publishing Company, Oxford, 1980), pp. 1–59.Google Scholar
  45. 45.
    M. Planck, Ann. Phys.-Berlin 4, 553 (1901).ADSCrossRefGoogle Scholar
  46. 46.
    A. Einstein, Ann. Phys.-Berlin 22, 569 (1907).ADSCrossRefGoogle Scholar
  47. 47.
    V. Celli, and N. Flytzanis, J. Appl. Phys. 41, 4443 (1970).ADSCrossRefGoogle Scholar
  48. 48.
    S. Ishioka, J. Phys. Soc. Jpn. 30, 323 (1971).ADSCrossRefGoogle Scholar
  49. 49.
    O. Kresse, and L. Truskinovsky, J. Mech. Phys. Solids 51, 1305 (2003).ADSMathSciNetCrossRefGoogle Scholar
  50. 50.
    O. Kresse, and L. Truskinovsky, J. Mech. Phys. Solids 52, 2521 (2004).ADSMathSciNetCrossRefGoogle Scholar
  51. 51.
    G. I. Taylor, and H. Quinney, Proc. R. Soc. A 143, 307 (1934).ADSCrossRefGoogle Scholar
  52. 52.
    J. J. Mason, A. J. Rosakis, and G. Ravichandran, Mech. Mater. 17, 135 (1994).CrossRefGoogle Scholar
  53. 53.
    X. Zhang, A. Acharya, N. J. Walkington, and J. Bielak, J. Mech. Phys. Solids 84, 145 (2015).ADSMathSciNetCrossRefGoogle Scholar
  54. 54.
    L. Lu, X. Chen, X. Huang, and K. Lu, Science 323, 607 (2009).ADSCrossRefGoogle Scholar
  55. 55.
    O. Grässel, L. Krüger, G. Frommeyer, and L. W. Meyer, Int. J. Plasticity 16, 1391 (2000).CrossRefGoogle Scholar
  56. 56.
    Y. Li, L. Zhu, Y. Liu, Y. Wei, Y. Wu, D. Tang, and Z. Mi, J. Mech. Phys. Solids 61, 2588 (2013).ADSCrossRefGoogle Scholar
  57. 57.
    J. Weertman, J. Appl. Phys. 38, 5293 (1967).ADSCrossRefGoogle Scholar
  58. 58.
    W. Cai, and V. V. Bulatov, Mater. Sci. Eng.-A 387-389, 277 (2004).CrossRefGoogle Scholar
  59. 59.
    B. Devincre, T. Hoc, and L. Kubin, Science 320, 1745 (2008).ADSCrossRefGoogle Scholar
  60. 60.
    K. Kang, V. V. Bulatov, and W. Cai, Proc. Natl. Acad. Sci. USA 109, 15174 (2012).ADSCrossRefGoogle Scholar
  61. 61.
    U. S. Lindholm, Deformation Maps in the Region of High Dislocation Velocity (Springer Berlin Heidelberg, Berlin, 1979).CrossRefGoogle Scholar
  62. 62.
    K. Kadau, T. C. Germann, P. S. Lomdahl, and B. L. Holian, Science 296, 1681 (2002).ADSCrossRefGoogle Scholar
  63. 63.
    Z. H. Jin, P. Gumbsch, E. Ma, K. Albe, K. Lu, H. Hahn, and H. Gleiter, Scripta. Mater. 54, 1163 (2006).CrossRefGoogle Scholar
  64. 64.
    C. Kittel, Introduction to Solid State Physics, 8th ed (Wiley, Hoboken, 2005).zbMATHGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.State Key Laboratory of Nonlinear Mechanics (LNM)Institute of Mechanics, Chinese Academy of SciencesBeijingChina
  2. 2.School of Engineering SciencesUniversity of Chinese Academy of SciencesBeijingChina

Personalised recommendations