Advertisement

Analytical solutions of the Rayleigh-Plesset equation for N-dimensional spherical bubbles

  • Zhen Wang
  • YuPeng Qin
  • Li Zou
Letter to the Editor

References

  1. 1.
    L. Rayleigh, Philos. Mag. Ser. 6 34, 94 (1917).CrossRefGoogle Scholar
  2. 2.
    N. A. Kudryashov, and D. I. Sinelshchikov, Wave Motion 50, 351 (2013).MathSciNetCrossRefGoogle Scholar
  3. 3.
    R. A. Van Gorder, J. Fluid Mech. 807, 478 (2016).ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    A. R. Klotz, Phys. Fluids 25, 082109 (2013).ADSCrossRefGoogle Scholar
  5. 5.
    W. Lauterborn, and T. Kurz, Rep. Prog. Phys. 73, 106501 (2010).ADSCrossRefGoogle Scholar
  6. 6.
    D. Obreschkow, M. Bruderer, and M. Farhat, Phys. Rev. E 85, 066303 (2012).ADSCrossRefGoogle Scholar
  7. 7.
    N. A. Kudryashov, and D. I. Sinelshchikov, J. Phys. A-Math. Theor. 47, 405202 (2014); Phys. Lett. A 379, 798 (2015); in Analytical solutions of the Rayleigh equation for arbitrary polytropic exponent: Proceedings of International Conference of Numerical Analysis and Applied Mathematics 2015 (ICNAAM, Rhodes, 2015), pp. 230010-1-230010-3.CrossRefGoogle Scholar
  8. 8.
    S. C. Mancas, and H. C. Rosu, Phys. Fluids 28, 022009 (2016).ADSCrossRefGoogle Scholar
  9. 9.
    F. A. Godínez, M. A. Escobedo, and M. Navarrete, J. Appl. Math. 2012, 591058 (2012).CrossRefGoogle Scholar
  10. 10.
    K. F. Sundman, Acta Math. 36, 105 (1913).MathSciNetCrossRefGoogle Scholar
  11. 11.
    Z. Wang, L. Zou, and H. Zhang, Phys. Lett. A 369, 77 (2007).ADSCrossRefGoogle Scholar
  12. 12.
    T. Fan, and X. You, Numer. Algor. 62, 337 (2013).CrossRefGoogle Scholar
  13. 13.
    S. J. Liao, Beyond Perturbation: Introduction to the Homotopy Analysis Method (Chapman and Hall/CRC Press, Boca Raton, 2003).CrossRefGoogle Scholar
  14. 14.
    A. B. Arons, J. P. Slifko, and A. Carter, J. Acoust. Soc. Am. 20, 271 (1948); A. B. Arons, J. Acoust. Soc. Am. 20, 277 (1948).ADSCrossRefGoogle Scholar
  15. 15.
    S. Liao, and Y. Tan, Studies Appl. Math. 119, 297 (2007).MathSciNetCrossRefGoogle Scholar
  16. 16.
    D. Fuster, and F. Montel, J. Fluid Mech. 779, 598 (2015).ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.School of Mathematical SciencesDalian University of TechnologyDalianChina
  2. 2.School of Naval Architecture, State Key Laboratory of Structural Analysis for Industrial EquipmentDalian University of TechnologyDalianChina
  3. 3.Collaborative Innovation Center for Advanced Ship and Deep-Sea ExplorationShanghaiChina

Personalised recommendations