QKD system with fast active optical path length compensation

  • Byung Kwon Park
  • Min Soo Lee
  • Min Ki Woo
  • Yong-Su Kim
  • Sang-Wook HanEmail author
  • Sung Moon


We develop a quantum key distribution (QKD) system with fast active optical path length compensation. A rapid and reliable active optical path length compensation scheme is proposed and applied to a plug-and-play QKD system. The system monitors changes in key rates and controls it is own operation automatically. The system achieves its optimal performance within three seconds of operation, which includes a sifted key rate of 5.5 kbps and a quantum bit error rate of less than 2% after an abrupt temperature variation along the 25 km quantum channel. The system also operates well over a 24 h period while completing more than 60 active optical path length compensations.


quantum key distribution optical path length compensation plug and play field programmable gate array 

PACS number(s)

03.67.Dd 03.67.Hk 07.05.Dz 07.50.Ek 


  1. 1.
    G. L. Long, and X. S. Liu, Phys. Rev. A 65, 032302 (2002).ADSCrossRefGoogle Scholar
  2. 2.
    F. G. Deng, G. L. Long, and X. S. Liu, Phys. Rev. A 68, 042317 (2003).ADSCrossRefGoogle Scholar
  3. 3.
    F. G. Deng, and G. L. Long, Phys. Rev. A 69, 052319 (2004).ADSCrossRefGoogle Scholar
  4. 4.
    J. Y. Hu, B. Yu, M. Y. Jing, L. T. Xiao, S. T. Jia, G. Q. Qin, and G. L. Long, Light Sci. Appl. 5, e16144 (2016).CrossRefGoogle Scholar
  5. 5.
    W. Zhang, D. S. Ding, Y. B. Sheng, L. Zhou, B. S. Shi, and G. C. Guo, 2016, arXiv: 1609.09184.Google Scholar
  6. 6.
    M. Hillery, V. Bužek, and A. Berthiaume, Phys. Rev. A 59, 1829 (1999).ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    C. H. Bennett, G. Brassad, in Quantum cryptography: Public key distribution and coin tossing: Proceedings of IEEE International Conference on Computers, Systems and Signal Processing (IEEE, Bangalore, 1984), pp. 175–179.Google Scholar
  8. 8.
    A. K. Ekert, Phys. Rev. Lett. 67, 661 (1991).ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    C. H. Bennett, Phys. Rev. Lett. 68, 3121 (1992).ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    H. K. Lo, X. Ma, and K. Chen, Phys. Rev. Lett. 94, 230504 (2005).ADSCrossRefGoogle Scholar
  11. 11.
    T. G. Noh, Phys. Rev. Lett. 103, 230501 (2009), arXiv: 0809.3979.ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    A. Laing, V. Scarani, J. G. Rarity, and J. L. O’Brien, Phys. Rev. A 82, 012304 (2010), arXiv: 1003.1050.ADSCrossRefGoogle Scholar
  13. 13.
    H. K. Lo, M. Curty, and B. Qi, Phys. Rev. Lett. 108, 130503 (2012), arXiv: 1109.1473.ADSCrossRefGoogle Scholar
  14. 14.
    S. Wang, Z. Q. Yin, W. Chen, D. Y. He, X. T. Song, H. W. Li, L. J. Zhang, Z. Zhou, G. C. Guo, and Z. F. Han, Nat. Photon. 9, 832 (2015).ADSCrossRefGoogle Scholar
  15. 15.
    A. R. Dixon, Z. L. Yuan, J. F. Dynes, A. W. Sharpe, and A. J. Shields, Opt. Express 16, 18790 (2008), arXiv: 0810.1069.ADSCrossRefGoogle Scholar
  16. 16.
    A. R. Dixon, Z. L. Yuan, J. F. Dynes, A. W. Sharpe, and A. J. Shields, Appl. Phys. Lett. 96, 161102 (2010), arXiv: 1005.4573.ADSCrossRefGoogle Scholar
  17. 17.
    P. D. Townsend, Nature 385, 47 (1997).ADSCrossRefGoogle Scholar
  18. 18.
    W. Chen, Z. F. Han, T. Zhang, H. Wen, Z. Q. Yin, F. X. Xu, Q. L. Wu, Y. Liu, Y. Zhang, X. F. Mo, Y. Z. Gui, G. Wei, and G. C. Guo, IEEE Photon. Tech. Lett. 21, 575 (2009).ADSCrossRefGoogle Scholar
  19. 19.
    T. Y. Chen, J. Wang, H. Liang, W. Y. Liu, Y. Liu, X. Jiang, Y. Wang, X. Wan, W. Q. Cai, L. Ju, L. K. Chen, L. J. Wang, Y. Gao, K. Chen, C. Z. Peng, Z. B. Chen, and J. W. Pan, Opt. Express 18, 27217 (2010).ADSCrossRefGoogle Scholar
  20. 20.
    S. Wang, W. Chen, Z. Q. Yin, Y. Zhang, T. Zhang, H. W. Li, F. X. Xu, Z. Zhou, Y. Yang, D. J. Huang, L. J. Zhang, F. Y. Li, D. Liu, Y. G. Wang, G. C. Guo, and Z. F. Han, Opt. Lett. 35, 2454 (2010), arXiv: 1203.4321.ADSCrossRefGoogle Scholar
  21. 21.
    M. Sasaki, M. Fujiwara, H. Ishizuka, W. Klaus, K. Wakui, M. Takeoka, S. Miki, T. Yamashita, Z. Wang, A. Tanaka, K. Yoshino, Y. Nambu, S. Takahashi, A. Tajima, A. Tomita, T. Domeki, T. Hasegawa, Y. Sakai, H. Kobayashi, T. Asai, K. Shimizu, T. Tokura, T. Tsurumaru, M. Matsui, T. Honjo, K. Tamaki, H. Takesue, Y. Tokura, J. F. Dynes, A. R. Dixon, A. W. Sharpe, Z. L. Yuan, A. J. Shields, S. Uchikoga, M. Legré, S. Robyr, P. Trinkler, L. Monat, J. B. Page, G. Ribordy, A. Poppe, A. Allacher, O. Maurhart, T. Länger, M. Peev, and A. Zeilinger, Opt. Express 19, 10387 (2011), arXiv: 1103.3566.ADSCrossRefGoogle Scholar
  22. 22.
    M. S. Lee, B. K. Park, M. K. Woo, C. H. Park, Y. S. Kim, S. W. Han, and S. Moon, Phys. Rev. A 94, 062321 (2016).ADSCrossRefGoogle Scholar
  23. 23.
    D. Stucki, M. Legré, F. Buntschu, B. Clausen, N. Felber, N. Gisin, L. Henzen, P. Junod, G. Litzistorf, P. Monbaron, L. Monat, J. B. Page, D. Perroud, G. Ribordy, A. Rochas, S. Robyr, J. Tavares, R. Thew, P. Trinkler, S. Ventura, R. Voirol, N. Walenta, and H. Zbinden, New J. Phys. 13, 123001 (2011), arXiv: 1203.4940.ADSCrossRefGoogle Scholar
  24. 24.
    P. Jouguet, S. Kunz-Jacques, T. Debuisschert, S. Fossier, E. Diamanti, R. Alléaume, R. Tualle-Brouri, P. Grangier, A. Leverrier, P. Pache, and P. Painchault, Opt. Express 20, 14030 (2012).ADSCrossRefGoogle Scholar
  25. 25.
    K. Yoshino, T. Ochi, M. Fujiwara, M. Sasaki, and A. Tajima, Opt. Express 21, 31395 (2013).ADSCrossRefGoogle Scholar
  26. 26.
    K. Shimizu, T. Honjo, M. Fujiwara, T. Ito, K. Tamaki, S. Miki, T. Yamashita, H. Terai, Z. Wang, and M. Sasaki, J. Lightwave Tech. 32, 141 (2014).ADSCrossRefGoogle Scholar
  27. 27.
    S. Wang, W. Chen, Z. Q. Yin, H. W. Li, D. Y. He, Y. H. Li, Z. Zhou, X. T. Song, F. Y. Li, D. Wang, H. Chen, Y. G. Han, J. Z. Huang, J. F. Guo, P. L. Hao, M. Li, C. M. Zhang, D. Liu, W. Y. Liang, C. H. Miao, P. Wu, G. C. Guo, and Z. F. Han, Opt. Express 22, 21739 (2014), arXiv: 1409.1568.ADSCrossRefGoogle Scholar
  28. 28.
    A. R. Dixon, J. F. Dynes, M. Lucamarini, B. Fröhlich, A. W. Sharpe, A. Plews, S. Tam, Z. L. Yuan, Y. Tanizawa, H. Sato, S. Kawamura, M. Fujiwara, M. Sasaki, and A. J. Shields, Opt. Express 23, 7583 (2015).ADSCrossRefGoogle Scholar
  29. 29.
    S. Wang, W. Chen, J. F. Guo, Z. Q. Yin, H. W. Li, Z. Zhou, G. C. Guo, and Z. F. Han, Opt. Lett. 37, 1008 (2012), arXiv: 1203.4323.ADSCrossRefGoogle Scholar
  30. 30.
    I. Choi, R. J. Young, and P. D. Townsend, New J. Phys. 13, 063039 (2011).ADSCrossRefGoogle Scholar
  31. 31.
    H. F. Zhang, J. Wang, K. Cui, C. L. Luo, S. Z. Lin, L. Zhou, H. Liang, T. Y. Chen, K. Chen, and J. W. Pan, J. Lightwave Tech. 30, 3226 (2012), arXiv: 1301.2383.ADSCrossRefGoogle Scholar
  32. 32.
    L. J. Zhang, Y. G. Wang, Z. Q. Yin, W. Chen, Y. Yang, T. Zhang, D. J. Huang, S. Wang, F. Y. Li, and Z. F. Han, Chin. Sci. Bull. 56, 2305 (2011).CrossRefGoogle Scholar
  33. 33.
    J. Young. QKD system detector autocalibration based on bit-error rate, US Patent, US 11/110,227 (2005-04-20).Google Scholar
  34. 34.
    A. Muller, T. Herzog, B. Huttner, W. Tittel, H. Zbinden, and N. Gisin, Appl. Phys. Lett. 70, 793 (1997).ADSCrossRefGoogle Scholar
  35. 35.
    G. Ribordy, J. D. Gautier, N. Gisin, O. Guinnard, and H. Zbinden, Electron. Lett. 34, 2116 (1998).CrossRefGoogle Scholar
  36. 36.
    Altera Incorporation, Stratix III Device Handbook (Altera Inc., 2010).Google Scholar
  37. 37.
    Micrel Incorporation, SY89295U Datasheet, (Micrel Inc., 2011).Google Scholar
  38. 38.
    Z. L. Yuan, A. R. Dixon, J. F. Dynes, A. W. Sharpe, and A. J. Shields, Appl. Phys. Lett. 92, 201104 (2008), arXiv: 0805.3414.ADSCrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Byung Kwon Park
    • 1
    • 2
  • Min Soo Lee
    • 1
    • 2
  • Min Ki Woo
    • 1
  • Yong-Su Kim
    • 1
  • Sang-Wook Han
    • 1
    Email author
  • Sung Moon
    • 1
  1. 1.Center for Quantum InformationKorea Institute of Science and TechnologySeoulKorea
  2. 2.Department of Nano-materials, Science and EngineeringKorea University of Science and TechnologyDaejeonKorea

Personalised recommendations