Advertisement

Description of the shape coexistence in neutron-deficient 74,76Kr with IBM2

  • DaLi ZhangEmail author
  • ChengFu Mu
Article

Abstract

The shape deformation and shape coexistence in 74,76Kr isotopes are investigated within the framework of the proton-neutron interacting boson model (IBM2). By considering the relative energy of the d proton boson to be different from that of the neutron boson, the low-lying energy spectrum is in good agreement with experimental results both qualitatively and quantitatively. In particular, the low-lying 0 2 + states associated with the shape-coexistence phenomenon are reproduced quite well. The calculated key sensitive quantities of B(E2) transition branch ratios are fairly consistent with the experimental data except for R 4. The predicated deformation parameter is very similar for the ground states in 74Kr and 76Kr, showing good agreement with the experimental result, and the calculated deformation parameter for the second 0+ state in 74Kr is close to the experimental data. The calculated results of the triaxiality parameter indicated an almost purely prolate shape for the ground state of 76Kr and a mostly prolate shape with a little triaxiality for the ground state of 74Kr. The calculations also show an oblate triaxial shape for the second 0+ state in 76Kr and maximum triaxiality for the second 0+ state in 74Kr. These results confirm the importance of the triaxial deformation for the description of such shape coexistence.

Keywords

74Kr 76Kr shape coexistence low-ling energy states IBM2 

References

  1. 1.
    A. Poves, J. Phys. G-Nucl. Part. Phys. 43, 020401 (2016).ADSCrossRefGoogle Scholar
  2. 2.
    K. Heyde, and J. L. Wood, Rev. Mod. Phys. 83, 1467 (2011).ADSCrossRefGoogle Scholar
  3. 3.
    J. E. García-ramos, and K. Heyde, Phys. Rev. C 92, 034309 (2015).ADSCrossRefGoogle Scholar
  4. 4.
    C. J. Prokop, B. P. Crider, S. N. Liddick, A. D. Ayangeakaa, M. P. Carpenter, J. J. Carroll, J. Chen, C. J. Chiara, H. M. David, A. C. Dombos, S. Go, J. Harker, R. V. F. Janssens, N. Larson, T. Lauritsen, R. Lewis, S. J. Quinn, F. Recchia, D. Seweryniak, A. Spyrou, S. Suchyta, W. B. Walters, and S. Zhu, Phys. Rev. C 92, 061302 (2015).ADSCrossRefGoogle Scholar
  5. 5.
    J. Park, A. B. Garnsworthy, R. Krücken, C. Andreoiu, G. C. Ball, P. C. Bender, A. Chester, A. Close, P. Finlay, P. E. Garrett, J. Glister, G. Hackman, B. Hadinia, K. G. Leach, E. T. Rand, S. Sjue, K. Starosta, C. E. Svensson, and E. Tardiff, Phys. Rev. C 93, 014315 (2016).ADSCrossRefGoogle Scholar
  6. 6.
    Z. J. Bai, X. M. Fu, C. F. Jiao, and F. R. Xu, Chin. Phys. C 39, 094101 (2015).ADSCrossRefGoogle Scholar
  7. 7.
    Y. X. Liu, S. Y. Yu, and Y. Sun, Sci. China-Phys. Mech. Astron. 58, 112003 (2015).CrossRefGoogle Scholar
  8. 8.
    N. Bree, K. Wrzosek-Lipska, A. Petts, A. Andreyev, B. Bastin, M. Bender, A. Blazhev, B. Bruyneel, P. A. Butler, J. Butterworth, M. P. Carpenter, J. Cederkäll, E. Clément, T. E. Cocolios, A. Deacon, J. Diriken, A. Ekström, C. Fitzpatrick, L. M. Fraile, C. Fransen, S. J. Freeman, L. P. Gaffney, J. E. García-ramos, K. Geibel, R. Gernhäuser, T. Grahn, M. Guttormsen, B. Hadinia, K. Hadynska-klek, M. Hass, P. H. Heenen, R. D. Herzberg, H. Hess, K. Heyde, M. Huyse, O. Ivanov, D. G. Jenkins, R. Julin, N. Kesteloot, T. Kröll, R. Krücken, A. C. Larsen, R. Lutter, P. Marley, P. J. Napiorkowski, R. Orlandi, R. D. Page, J. Pakarinen, N. Patronis, P. J. Peura, E. Piselli, P. Rahkila, E. Rapisarda, P. Reiter, A. P. Robinson, M. Scheck, S. Siem, K. S. Chakkal, J. F. Smith, J. Srebrny, I. Stefanescu, G. M. Tveten, P. Van Duppen, J. Van de Walle, D. Voulot, N. Warr, F. Wenander, A. Wiens, J. L. Wood, and M. Zielinska, Phys. Rev. Lett. 112, 162701 (2014).ADSCrossRefGoogle Scholar
  9. 9.
    G. X. Dong, X. B. Wang, and S. Y. Yu, Sci. China-Phys. Mech. Astron. 58, 112004 (2015).CrossRefGoogle Scholar
  10. 10.
    A. Görgen, and W. Korten, J. Phys. G-Nucl. Part. Phys. 43, 024002 (2016).ADSCrossRefGoogle Scholar
  11. 11.
    E. Bouchez, I. Matea, W. Korten, F. Becker, B. Blank, C. Borcea, A. Buta, A. Emsallem, G. De France, J. Genevey, F. Hannachi, K. Hauschild, A. Hürstel, Y. Le Coz, M. Lewitowicz, R. Lucas, F. Negoita, F. O. Santos, D. Pantelica, J. Pinston, P. Rahkila, M. Rejmund, M. Stanoiu, and C. Theisen, Phys. Rev. Lett. 90, 082502 (2003).ADSCrossRefGoogle Scholar
  12. 12.
    C. Chandler, P. H. Regan, C. J. Pearson, B. Blank, A. M. Bruce, W. N. Catford, N. Curtis, S. Czajkowski, W. Gelletly, R. Grzywacz, Z. Janas, M. Lewitowicz, C. Marchand, N. A. Orr, R. D. Page, A. Petrovici, A. T. Reed, M. G. Saint-Laurent, S. M. Vincent, R. Wadsworth, D. D. Warner, and J. S. Winfield, Phys. Rev. C 56, R2924 (1997).ADSCrossRefGoogle Scholar
  13. 13.
    E. Clement, A. Gorgen, W. Korten, E. Bouchez, A. Chatillon, J.-P. Delaroche, M. Girod, H. Goutte, A. Hurstel, Y. Le Coz, A. Obertelli, S. Peru, C. Theisen, J. N. Wilson, M. Zielinska, C. Andreoiu, F. Becker, P. A. Butler, J. M. Casandjian, W. N. Catford, T. Czosnyka, G. de France, J. Gerl, R.-D. Herzberg, J. Iwanicki, D. G. Jenkins, G. D. Jones, P. J. Napiorkowski, G. Sletten, and C. N. Timis, Phys. Rev. C 75, 054313 (2007).ADSCrossRefGoogle Scholar
  14. 14.
    O. Möller, A. Dewald, P. Petkov, B. Saha, A. Fitzler, K. Jessen, D. Tonev, T. Klug, S. Heinze, J. Jolie, P. Brentano, D. Bazzacco, C. A. Ur, E. Farnea, M. Axiotis, S. Lunardi, G. Angelis, D. R. Napoli, N. Marginean, T. Martinez, M. A. Caprio, and R. F. Casten, Phys. Rev. C 74, 024313 (2006).ADSCrossRefGoogle Scholar
  15. 15.
    M. Bender, and P. H. Heenen, Phys. Rev. C 78, 024309 (2008).ADSCrossRefGoogle Scholar
  16. 16.
    M. Girod, J. P. Delaroche, A. Görgen, and A. Obertelli, Phys. Lett. B 676, 39 (2009).ADSCrossRefGoogle Scholar
  17. 17.
    T. R. Rodríguez, Phys. Rev. C 90, 034306 (2014).ADSCrossRefGoogle Scholar
  18. 18.
    Y. Fu, H. Mei, J. Xiang, Z. P. Li, J. M. Yao, and J. Meng, Phys. Rev. C 87, 054305 (2013).ADSCrossRefGoogle Scholar
  19. 19.
    J. M. Yao, K. Hagino, Z. P. Li, J. Meng, and P. Ring, Phys. Rev. C 89, 054306 (2014).ADSCrossRefGoogle Scholar
  20. 20.
    F. Iachello, and A. Arima, The Interacting Boson Model (Cambridge University Press, Cambridge, 1987).CrossRefGoogle Scholar
  21. 21.
    A. Giannatiempo, and P. Sona, Phys. Rev. C 62, 044302 (2000).ADSCrossRefGoogle Scholar
  22. 22.
    H. F. Al-Khudair, and G. L. Long, High Energy Phys. Nucl. Phys. 28, 717 (2004).Google Scholar
  23. 23.
    M. Albers, K. Nomura, N. Warr, A. Blazhev, J. Jolie, D. Mücher, B. Bastin, C. Bauer, C. Bernards, L. Bettermann, V. Bildstein, J. Butterworth, M. Cappellazzo, J. Cederkäll, D. Cline, I. Darby, S. Das Gupta, J. M. Daugas, T. Davinson, H. De Witte, J. Diriken, D. Filipescu, E. Fiori, C. Fransen, L. P. Gaffney, G. Georgiev, R. Gernhäuser, M. Hackstein, S. Heinze, H. Hess, M. Huyse, D. Jenkins, J. Konki, M. Kowalczyk, T. Kröll, R. Krücken, J. Litzinger, R. Lutter, N. Marginean, C. Mihai, K. Moschner, P. Napiorkowski, B. S. N. Singh, K. Nowak, J. Pakarinen, M. Pfeiffer, D. Radeck, P. Reiter, S. Rigby, L. M. Robledo, R. Rodríguez-guzmán, M. Rudigier, M. Scheck, M. Seidlitz, B. Siebeck, G. S. Simpson, P. Thöle, T. Thomas, J. Van de Walle, P. Van Duppen, M. Vermeulen, D. Voulot, R. Wadsworth, F. Wenander, K. Wimmer, K. O. Zell, and M. Zielinska, Nucl. Phys. A 899, 1 (2013).ADSCrossRefGoogle Scholar
  24. 24.
    M. A. Caprio, and F. Iachello, Phys. Rev. Lett. 93, 242502 (2004).ADSCrossRefGoogle Scholar
  25. 25.
    M. A. Caprio, and F. Iachello, Ann. Phys. 318, 454 (2005).ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    H. Dejbakhsh, A. Kolomiets, and S. Shlomo, Phys. Rev. C 51, 573 (1995).ADSCrossRefGoogle Scholar
  27. 27.
    D. L. Zhang, and B. G. Ding, Sci. China-Phys. Mech. Astron. 57, 447 (2014).ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    D. L. Zhang, S. Q. Yuan, and B. G. Ding, Chin. Phys. Lett. 32, 062101 (2015).ADSCrossRefGoogle Scholar
  29. 29.
    T. Otsuka, and N. Yoshida, Program NPBOS, JAER-M Report, (No. 85, 1985).Google Scholar
  30. 30.
    P. Cejnar, J. Jolie, and R. F. Casten, Rev. Mod. Phys. 82, 2155 (2010).ADSCrossRefGoogle Scholar
  31. 31.
    E. Elhami, J. N. Orce, S. Mukhopadhyay, S. N. Choudry, M. Scheck, M. T. Mcellistrem, and S. W. Yates, Phys. Rev. C 75, 011301 (2007).ADSCrossRefGoogle Scholar
  32. 32.
    R. F. Casten, and D. D. Warner, Rev. Mod. Phys. 60, 389 (1988).ADSMathSciNetCrossRefGoogle Scholar
  33. 33.
    Y. Zhang, Z. Hou, and Y. Liu, Phys. Rev. C 76, 011305 (2007).ADSCrossRefGoogle Scholar
  34. 34.
    Z. Hou, Y. Zhang, and Y. Liu, Phys. Lett. B 688, 298 (2010).ADSCrossRefGoogle Scholar
  35. 35.
    Y. Zhang, F. Pan, Y. X. Liu, Y. A. Luo, and J. P. Draayer, Phys. Rev. C 90, 064318 (2014).ADSCrossRefGoogle Scholar
  36. 36.
    T. Thomas, K. Nomura, V. Werner, T. Ahn, N. Cooper, H. Duckwitz, M. Hinton, G. Ilie, J. Jolie, P. Petkov, and D. Radeck, Phys. Rev. C 88, 044305 (2013).ADSCrossRefGoogle Scholar
  37. 37.
    H. Dejbakhsh, D. Latypov, G. Ajupova, and S. Shlomo, Phys. Rev. C 46, 2326 (1992).ADSCrossRefGoogle Scholar
  38. 38.
    J. E. García-ramos, and K. Heyde, Phys. Rev. C 89, 014306 (2014).ADSCrossRefGoogle Scholar
  39. 39.
    V. Werner, N. Pietralla, P. Von Brentano, R. F. Casten, and R. V. Jolos, Phys. Rev. C 61, 021301 (2000).ADSCrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of PhysicsHuzhou UniversityHuzhouChina

Personalised recommendations