Electrical control of antiferromagnetic metal up to 15 nm

  • PengXiang Zhang
  • GuFan Yin
  • YuYan Wang
  • Bin Cui
  • Feng Pan
  • Cheng Song


Manipulation of antiferromagnetic (AFM) spins by electrical means is on great demand to develop the AFM spintronics with low power consumption. Here we report a reversible electrical control of antiferromagnetic moments of FeMn up to 15 nm, using an ionic liquid to exert a substantial electric-field effect. The manipulation is demonstrated by the modulation of exchange spring in [Co/Pt]/FeMn system, where AFM moments in FeMn pin the magnetization rotation of Co/Pt. By carrier injection or extraction, the magnetic anisotropy of the top layer in FeMn is modulated to influence the whole exchange spring and then passes its influence to the [Co/Pt]/FeMn interface, through a distance up to the length of exchange spring that fully screens electric field. Comparing FeMn to IrMn, despite the opposite dependence of exchange bias on gate voltages, the same correlation between carrier density and exchange spring stiffness is demonstrated. Besides the fundamental significance of modulating the spin structures in metallic AFM via all-electrical fashion, the present finding would advance the development of low-power-consumption AFM spintronics.


antiferromagnetic spintronics electric-field effect exchange spring carrier density ionic liquid 


  1. 1.
    A. H. Macdonald, and M. Tsoi, Phil. Trans. R. Soc. A-Math. Phys. Eng. Sci. 369, 3098 (2011).ADSCrossRefGoogle Scholar
  2. 2.
    J. Sinova, and I. Zutic, Nat. Mater. 11, 368 (2012).ADSCrossRefGoogle Scholar
  3. 3.
    X. Marti, I. Fina, C. Frontera, J. Liu, P. Wadley, Q. He, R. J. Paull, J. D. Clarkson, J. Kudrnovsky, I. Turek, J. Kunes, D. Yi, J. H. Chu, A. T. Nelson, L. You, E. Arenholz, S. Salahuddin, J. Fontcuberta, T. Jungwirth, and R. Ramesh, Nat. Mater. 13, 367 (2014).ADSCrossRefGoogle Scholar
  4. 4.
    B. O. Park, J. Wunderlich, X. Marti, V. Holy, Y. Kurosaki, M. Yamada, H. Yamamoto, A. Nishide, J. Hayakawa, H. Takahashi, A. B. Shick, and T. Jungwirth, Nat. Mater. 10, 347 (2011).ADSCrossRefGoogle Scholar
  5. 5.
    Y. Y. Wang, C. Song, B. Cui, O. Y. Wang, F. Zeng, and F. Pan, Phys. Rev. Lett. 109, 137201 (2012).ADSCrossRefGoogle Scholar
  6. 6.
    Y. Wang, C. Song, O. Wang, J. Miao, F. Zeng, and F. Pan, Adv. Funct. Mater. 24, 6806 (2014).CrossRefGoogle Scholar
  7. 7.
    R. Cheng, J. Xiao, Q. Niu, and A. Brataas, Phys. Rev. Lett. 113, 057601 (2014).ADSCrossRefGoogle Scholar
  8. 8.
    T. Zhao, A. Scholl, F. Zavaliche, K. Lee, M. Barry, A. Doran, M. P. Cruz, Y. H. Chu, C. Ederer, N. A. Spaldin, R. R. Das, D. M. Kim, S. H. Baek, C. B. Eom, and R. Ramesh, Nat. Mater. 5, 823 (2006).ADSCrossRefGoogle Scholar
  9. 9.
    S. M. Wu, S. A. Cybart, D. Yi, J. M. Parker, R. Ramesh, and R. C. Dynes, Phys. Rev. Lett. 110, 067202 (2013).ADSCrossRefGoogle Scholar
  10. 10.
    S. J. Oong, H. C. Ding, W. J. Zhu, C. O. Duan, Z. Zhu, and J. H. Chu, Sci. China-Phys. Mech. Astron. 56, 232 (2013).ADSCrossRefGoogle Scholar
  11. 11.
    H. Ohno, D. Chiba, F. Matsukura, T. Omiya, E. Abe, T. Dietl, Y. Ohno, and K. Ohtani, Nature 408, 944 (2000).ADSCrossRefGoogle Scholar
  12. 12.
    D. Chiba, Science 301, 943 (2003).ADSCrossRefGoogle Scholar
  13. 13.
    C. Z. Chang, M. H. Liu, Z. C. Zhang, Y. Y. Wang, K. He, and Q. K. Xue, Sci. China-Phys. Mech. Astron. 59, 637501 (2016).CrossRefGoogle Scholar
  14. 14.
    M. Weisheit, S. Fahler, A. Marty, Y. Souche, C. Poinsignon, and D. Oivord, Science 315, 349 (2007).ADSCrossRefGoogle Scholar
  15. 15.
    K. Shimamura, D. Chiba, S. Ono, S. Fukami, N. Ishiwata, M. Kawaguchi, K. Kobayashi, and T. Ono, Appl. Phys. Lett. 100, 122402 (2012).ADSCrossRefGoogle Scholar
  16. 16.
    T. Maruyama, Y. Shiota, T. Nozaki, K. Ohta, N. Toda, M. Mizuguchi, A. A. Tulapurkar, T. Shinjo, M. Shiraishi, S. Mizukami, Y. Ando, and Y. Suzuki, Nat. Nanotech. 4, 158 (2009).ADSCrossRefGoogle Scholar
  17. 17.
    M. Endo, S. Kanai, S. Ikeda, F. Matsukura, and H. Ohno, Appl. Phys. Lett. 96, 212503 (2010).ADSCrossRefGoogle Scholar
  18. 18.
    W. O. Wang, M. Li, S. Hageman, and C. L. Chien, Nat Mater 11, 64 (2011).ADSCrossRefGoogle Scholar
  19. 19.
    Y. Wang, X. Zhou, C. Song, Y. Yan, S. Zhou, O. Wang, C. Chen, F. Zeng, and F. Pan, Adv. Mater. 27, 3196 (2015).CrossRefGoogle Scholar
  20. 20.
    M. Ali, C. H. Marrows, and B. J. Hickey, Phys. Rev. B 67, 172405 (2003).ADSCrossRefGoogle Scholar
  21. 21.
    Y. Y. Wang, C. Song, O. Y. Wang, F. Zeng, and F. Pan, New J. Phys. 16, 123032 (2014).ADSCrossRefGoogle Scholar
  22. 22.
    T. Sato, T. Maruo, S. Marukane, and K. Takagi, J. Power Sources 138, 253 (2004).ADSCrossRefGoogle Scholar
  23. 23.
    T. Sato, O. Masuda, and K. Takagi, Electrochim. Acta 49,3603 (2004).CrossRefGoogle Scholar
  24. 24.
    M. Ekholm, and I. A. Abrikosov, Phys. Rev. B 84, 104423 (2011).ADSCrossRefGoogle Scholar
  25. 25.
    R. Sbiaa, H. Meng, and S. N. Piramanayagam, Phys. Status Solid Rapid Res. Lett. 5, 413 (2011).ADSCrossRefGoogle Scholar
  26. 26.
    F. Oarcia, J. Moritz, F. Ernult, S. Auffret, B. Rodmacq, B. Dieny, J. Carnarero, Y. Pennec, S. Pizzini, and J. Vogel, IEEE Trans. Magn. 38, 2730 (2002).ADSCrossRefGoogle Scholar
  27. 27.
    T. Seki, M. Kohda, J. Nitta, and K. Takanashi, Appl. Phys. Lett. 98, 212505 (2011).ADSCrossRefGoogle Scholar
  28. 28.
    K. Nakamura, R. Shimabukuro, Y. Fujiwara, T. Akiyama, T. Ito, and A. J. Freeman, Phys. Rev. Lett. 102, 187201 (2009).ADSCrossRefGoogle Scholar
  29. 29.
    H. Zhang, M. Richter, K. Koepernik, I. Opahle, F. Tasnadi, and H. Eschrig, New J. Phys. 11, 043007 (2009).ADSCrossRefGoogle Scholar
  30. 30.
    O. H. O. Daalderop, P. J. Kelly, and M. F. H. Schuurmans, Phys. Rev. B 44, 12054 (1991).ADSCrossRefGoogle Scholar
  31. 31.
    L. Szunyogh, B. Lazarovits, L. Udvardi, J. Jackson, and U. Nowak, Phys. Rev. B 79, 020403(r) (2009).ADSCrossRefGoogle Scholar
  32. 32.
    R. Y. Umetsu, A. Sakuma, and K. Fukamichi, Appl. Phys. Lett. 89, 052504 (2006).ADSCrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • PengXiang Zhang
    • 1
  • GuFan Yin
    • 1
  • YuYan Wang
    • 1
  • Bin Cui
    • 1
  • Feng Pan
    • 1
  • Cheng Song
    • 1
  1. 1.Key Laboratory of Advanced Materials (MOE)School of Materials Science and Engineering, Tsinghua UniversityBeijingChina

Personalised recommendations