Strain- and twist-engineered optical absorption of few-layer black phosphorus



Density functional and many-body perturbation theories calculations were carried out to investigate fundamental and optical bandgap, exciton binding energy and optical absorption property of normal and strain- and twist-engineered few-layer black phosphorus (BP). We found that the fundamental bandgaps of few layer BP can be engineered by layer stacking and in-plane strain, with linear relationships to their associated exciton binding energies. The strain-dependent optical absorption behaviors are also anisotropic that the position of the first absorption peak monotonically blue-shifts as the strain applies to either direction for incident light polarized along the armchair direction, but this is not the case for that along the zigzag direction. Given those striking properties, we proposed two prototype devices for building potentially more balanced light absorbers and light filter passes, which promotes further applications and investigations of BP in nanoelectronics and optoelectronics.


black phosphorus light absorption strain-engineering exciton binding energy 


  1. 1.
    K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Nature 438, 197 (2005).ADSCrossRefGoogle Scholar
  2. 2.
    J. Feng, X. Qian, C. W. Huang, and J. Li, Nat. Photon. 6, 866 (2012).ADSCrossRefGoogle Scholar
  3. 3.
    L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, Nat. Nanotech. 9, 372 (2014). arXiv: 1401.4117ADSCrossRefGoogle Scholar
  4. 4.
    Q. Wei, and X. Peng, Appl. Phys. Lett. 104, 251915 (2014). arXiv: 1403.7882ADSCrossRefGoogle Scholar
  5. 5.
    H. Liu, A. T. Neal, Z. Zhu, Z. Luo, X. Xu, D. Tománek, and P. D. Ye, ACS Nano 8, 4033 (2014).CrossRefGoogle Scholar
  6. 6.
    J. Qiao, X. Kong, Z. X. Hu, F. Yang, and W. Ji, Nat. Commun. 5, 4475 (2014). arXiv: 1401.5045ADSGoogle Scholar
  7. 7.
    A. S. Rodin, A. Carvalho, and A. H. Castroneto, Phys. Rev. Lett. 112, 176801 (2014). arXiv: 1401.1801ADSCrossRefGoogle Scholar
  8. 8.
    W. Lu, H. Nan, J. Hong, Y. Chen, C. Zhu, Z. Liang, X. Ma, Z. Ni, C. Jin, and Z. Zhang, Nano Res. 7, 853 (2014).ADSCrossRefGoogle Scholar
  9. 9.
    M. R. Wagner, G. Callsen, J. S. Reparaz, R. Kirste, A. Hoffmann, A. V. Rodina, A. Schleife, F. Bechstedt, and M. R. Phillips, Phys. Rev. B 88, 235210 (2013). arXiv: 1312.0529ADSCrossRefGoogle Scholar
  10. 10.
    T. Thonhauser, V. R. Cooper, S. Li, A. Puzder, P. Hyldgaard, and D. C. Langreth, Phys. Rev. B 76, 125112 (2007).ADSCrossRefGoogle Scholar
  11. 11.
    J. Deslippe, G. Samsonidze, D. A. Strubbe, M. Jain, M. L. Cohen, and S. G. Louie, Comp. Phys. Commun. 183, 1269 (2012). arXiv: 1111.4429ADSCrossRefGoogle Scholar
  12. 12.
    J. H. Choi, P. Cui, H. Lan, and Z. Zhang, Phys. Rev. Lett. 115, 066403 (2015).ADSCrossRefGoogle Scholar
  13. 13.
    G. D. Scholes, and G. Rumbles, Nat. Mater. 5, 683 (2006).ADSCrossRefGoogle Scholar
  14. 14.
    C. D. Spataru, S. Ismail-beigi, L. X. Benedict, and S. G. Louie, Phys. Rev. Lett. 92, 077402 (2004).ADSCrossRefGoogle Scholar
  15. 15.
    F. Wang, Science 308, 838 (2005).ADSCrossRefGoogle Scholar
  16. 16.
    Z. Wang, H. Pedrosa, T. Krauss, and L. Rothberg, Phys. Rev. Lett. 96, 047403 (2006).ADSCrossRefGoogle Scholar
  17. 17.
    L. Wirtz, A. Marini, and A. Rubio, Phys. Rev. Lett. 96, 126104 (2006).ADSCrossRefGoogle Scholar
  18. 18.
    L. Yang, J. Deslippe, C. H. Park, M. L. Cohen, and S. G. Louie, Phys. Rev. Lett. 103, 186802 (2009). arXiv: 0906.0969ADSCrossRefGoogle Scholar
  19. 19.
    F. Aryasetiawan, and O. Gunnarsson, Rep. Prog. Phys. 61, 237 (1998).ADSCrossRefGoogle Scholar
  20. 20.
    S. Baroni, S. De gironcoli, A. Dal corso, and P. Giannozzi, Rev. Mod. Phys. 73, 515 (2001).ADSCrossRefGoogle Scholar
  21. 21.
    L. Hedin, J. Phys.-Condens. Matter 11, R489 (1999).ADSCrossRefGoogle Scholar
  22. 22.
    G. Onida, L. Reining, and A. Rubio, Rev. Mod. Phys. 74, 601 (2002).ADSCrossRefGoogle Scholar
  23. 23.
    M. S. Hybertsen, and S. G. Louie, Phys. Rev. B 34, 5390 (1986).ADSCrossRefGoogle Scholar
  24. 24.
    M. Rohlfing, and S. G. Louie, Phys. Rev. B 62, 4927 (2000).ADSCrossRefGoogle Scholar
  25. 25.
    P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal corso, S. De gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, and R. M. Wentzcovitch, J. Phys.-Condens. Matter 21, 395502 (2009). arXiv: 0906.2569CrossRefGoogle Scholar
  26. 26.
    J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).ADSCrossRefGoogle Scholar
  27. 27.
    D. R. Hamann, M. Schlüter, and C. Chiang, Phys. Rev. Lett. 43, 1494 (1979).ADSCrossRefGoogle Scholar
  28. 28.
    M. Dion, H. Rydberg, E. Schröder, D. C. Langreth, and B. I. Lundqvist, Phys. Rev. Lett. 92, 246401 (2004).ADSCrossRefGoogle Scholar
  29. 29.
    J. Klimeš, D. R. Bowler, and A. Michaelides, Phys. Rev. B 83, 195131 (2011). arXiv: 1102.1358ADSCrossRefGoogle Scholar
  30. 30.
    J. Klimeš, D. R. Bowler, and A. Michaelides, J. Phys.-Condens. Matter 22, 022201 (2010).ADSCrossRefGoogle Scholar
  31. 31.
    Y. Du, C. Ouyang, S. Shi, and M. Lei, J. Appl. Phys. 107, 093718 (2010).ADSCrossRefGoogle Scholar
  32. 32.
    R. Fei, and L. Yang, Nano Lett. 14, 2884 (2014). arXiv: 1403.1003ADSCrossRefGoogle Scholar
  33. 33.
    K. Luo, S. Y. Chen, and C. G. Duan, Sci. China-Phys. Mech. Astron. 58, 087301 (2015).ADSCrossRefGoogle Scholar
  34. 34.
    V. Tran, R. Soklaski, Y. Liang, and L. Yang, Phys. Rev. B 89, 235319 (2014).ADSCrossRefGoogle Scholar
  35. 35.
    H. Shi, H. Pan, Y. W. Zhang, and B. I. Yakobson, Phys. Rev. B 87, 155304 (2013). arXiv: 1211.5653ADSCrossRefGoogle Scholar
  36. 36.
    K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, Phys. Rev. Lett. 105, 136805 (2010). arXiv: 1004.0546ADSCrossRefGoogle Scholar
  37. 37.
    J. Li, Z. Shan, and E. Ma, MRS Bull. 39, 108 (2014).CrossRefGoogle Scholar
  38. 38.
    F. Guinea, M. I. Katsnelson, and A. K. Geim, Nat. Phys. 6, 30 (2009). arXiv: 0909.1787CrossRefGoogle Scholar
  39. 39.
    C. Lee, X. Wei, J. W. Kysar, and J. Hone, Science 321, 385 (2008).ADSCrossRefGoogle Scholar
  40. 40.
    J. Klimeš, D. R. Bowler, and A. Michaelides, J. Phys.-Condens. Matter 22, 022201 (2010).ADSCrossRefGoogle Scholar
  41. 41.
    J. Klimeš, D. R. Bowler, and A. Michaelides, Phys. Rev. B 83, 195131 (2011). arXiv: 1102.1358ADSCrossRefGoogle Scholar
  42. 42.
    T. Cao, X. Li, L. Liu, and J. Zhao, Comp. Mater. Sci. 112, 297 (2016).CrossRefGoogle Scholar
  43. 43.
    J. W. Jiang, and H. S. Park, Nat. Commun. 5, 4727 (2014). arXiv: 1403.4326ADSGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of Physics and Beijing Key Laboratory of Optoelectronic Functional Materials & Micro-Nano DevicesRenmin University of ChinaBeijingChina

Personalised recommendations