Advertisement

Gravitational wave astrophysics, data analysis and multimessenger astronomy

  • Hyung Mok Lee
  • Eric-Olivier Le Bigot
  • ZhiHui Du
  • ZhangXi Lin
  • XiangYu Guo
  • LinQing Wen
  • Khun Sang Phukon
  • Vihan Pandey
  • Sukanta Bose
  • Xi-Long Fan
  • Martin Hendry
Invited Review
Part of the following topical collections:
  1. Special Topic: the Next Detectors for Gravitational Wave Astronomy

Abstract

This paper reviews gravitational wave sources and their detection. One of the most exciting potential sources of gravitational waves are coalescing binary black hole systems. They can occur on all mass scales and be formed in numerous ways, many of which are not understood. They are generally invisible in electromagnetic waves, and they provide opportunities for deep investigation of Einstein’s general theory of relativity. Sect. 1 of this paper considers ways that binary black holes can be created in the universe, and includes the prediction that binary black hole coalescence events are likely to be the first gravitational wave sources to be detected. The next parts of this paper address the detection of chirp waveforms from coalescence events in noisy data. Such analysis is computationally intensive. Sect. 2 reviews a new and powerful method of signal detection based on the GPUimplemented summed parallel infinite impulse response filters. Such filters are intrinsically real time alorithms, that can be used to rapidly detect and localise signals. Sect. 3 of the paper reviews the use of GPU processors for rapid searching for gravitational wave bursts that can arise from black hole births and coalescences. In sect. 4 the use of GPU processors to enable fast efficient statistical significance testing of gravitational wave event candidates is reviewed. Sect. 5 of this paper addresses the method of multimessenger astronomy where the discovery of electromagnetic counterparts of gravitational wave events can be used to identify sources, understand their nature and obtain much greater science outcomes from each identified event.

Keywords

gravitational waves data analysis multimessenger 

References

  1. 1.
    Kim C, Perera B B P, McLaughlin M, et al. Implications of PSR J0737-3039B for the Galactic NS-NS binary merger rate. Mon Not R Astron Soc, 2015, 448(1): 928–938ADSCrossRefGoogle Scholar
  2. 2.
    Abadie J, Abbott B P, Abbott R, et al. Predictions for the rates of compact binary coalescences observable by ground-based gravitationalwave detectors. Class Quantum Grav, 2010, 27(17): 173001ADSCrossRefGoogle Scholar
  3. 3.
    Press W H, Teukolsky S A. Formation of close binaries by 2-body tidal capture. Astrophys J, 1977, 213(1): 183–192ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    Lee H M, Ostriker J P. Cross-sections for tidal capture binary formation and stellar merger. Astrophys J, 1986, 310(1): 176–188ADSCrossRefGoogle Scholar
  5. 5.
    Peters P C, Mathews J. Gravitational radiation from point masses in a Keplerian orbit. Phys Rev, 1963, 131(1): 435ADSMathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Goodman J, Hut P. Binary single-star scattering. 5. steady state binary distribution in a homogeneous static background of single stars. Astrophys J, 1993, 403(1): 271Google Scholar
  7. 7.
    Farrell S A, Webb N A, Natalie A, et al. An intermediate-mass black hole of over 500 solar masses in the galaxy ESO 243-49. Nature, 2009, 460(7251): 73–75ADSCrossRefGoogle Scholar
  8. 8.
    Lee H M. Evolution of galactic nuclei with 10-m (circle dot), blackholes. Mon Not R Astron Soc, 1995, 272(3): 605–617ADSCrossRefGoogle Scholar
  9. 9.
    Quinlan G D, Shapiro S L. Dynamical evolution of dense clusters of compact stars. Astrophys J, 1989, 343(2): 725–749ADSCrossRefGoogle Scholar
  10. 10.
    Bahcall J N, Wolf R A. Star distribution around a massive black-hole in a globular cluster. Astrophys J, 1976, 209(1): 214–232ADSCrossRefGoogle Scholar
  11. 11.
    Hong J S, Lee HM. Black hole binaries in galactic nuclei and gravitational wave sources. Mon Not R Astron Soc, 2015, 448(1): 754–770ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    Ashman K M, Zepf S E. The formation of globular-clusters in merging and interacting galaxies. Astrophys J, 1992, 384(1): 50–61ADSCrossRefGoogle Scholar
  13. 13.
    Strader J, Chomiuk L, Maccarone T J, et al. Two stellar-mass black holes in the globular cluster M22. Nature, 2012, 490(7418): 71–73ADSCrossRefGoogle Scholar
  14. 14.
    Janka H T. Natal kicks of stellar mass black holes by asymmetric mass ejection in fallback supernovae. Mon Not R Astron Soc, 2013, 434(2): 1355–1361ADSCrossRefGoogle Scholar
  15. 15.
    Banerjee S, Baumgardt H, Kroupa P. Stellar-mass black holes in star clusters: implications for gravitational wave radiation. Mon Not R Astron Soc, 2010, 402(1): 371–380ADSCrossRefGoogle Scholar
  16. 16.
    Downing J M B, Benacquista M J, Giersz M, et al. Compact binaries in star clusters—I. Black hole binaries inside globular clusters. Mon Not R Astron Soc, 2010, 407(3): 1946–1962ADSCrossRefGoogle Scholar
  17. 17.
    Tanikawa A. Dynamical evolution of stellar mass black holes in dense stellar clusters: Estimate for merger rate of binary black holes originating from globular clusters. Mon Not R Astron Soc, 2013, 435(2): 1358–1375ADSCrossRefGoogle Scholar
  18. 18.
    Bae Y B, Kim C, Lee H M. Compact binaries ejected from globular clusters as gravitational wave sources. Mon Not R Astron Soc, 2014, 440(2): 2714–2725ADSCrossRefGoogle Scholar
  19. 19.
    Kroupa P. On the variation of the initial mass function. Mon Not R Astron Soc, 2001, 322(2): 231–246ADSCrossRefGoogle Scholar
  20. 20.
    Gnedin O Y, Zhao H S, Pringle J E, et al. The unique history of the globular cluster omega Centauri. Astrophys J, 2002, 568(1): L23–L26ADSCrossRefGoogle Scholar
  21. 21.
    Zwart S F P, McMillan S L W. Black hole mergers in the Universe. Astrophys J, 2000, 528(1): L17–L20ADSCrossRefGoogle Scholar
  22. 22.
    Gnedin O Y, Lee H M, Ostriker J P. Effects of tidal shocks on the evolution of globular clusters. Astrophys J, 1999, 522(2): 935–949ADSCrossRefGoogle Scholar
  23. 23.
    Fong W, Berger E. The locations of short gamma-ray bursts as evidence for compact object binary progenitors. Astrophys J, 2013, 776(1): 18ADSCrossRefGoogle Scholar
  24. 24.
    O’Leary R M, Kocsis B, Loeb A. Gravitational waves from scattering of stellar-mass black holes in galactic nuclei. Mon Not R Astron Soc, 2009, 395(4): 2127–2146ADSCrossRefGoogle Scholar
  25. 25.
    Hopman C, Alexander T. The effect of mass segregation on gravitational wave sources near massive black holes. Astrophys J, 2006, 645(2): L133–L136ADSCrossRefGoogle Scholar
  26. 26.
    Barth A J, Greene J E, Ho L C. Dwarf Seyfert 1 nuclei and the lowmass end of the MBH-sigma relation. Astrophys J, 2005, 619(2): L151–L154ADSCrossRefGoogle Scholar
  27. 27.
    Klimenko S, Yakushin I, Mercer A, et al. A coherent method for detection of gravitational wave bursts. Class Quantum Grav, 2008, 25(11): 114029ADSCrossRefGoogle Scholar
  28. 28.
    Pai A, Dhurandhar S, Bose S. Data-analysis strategy for detecting gravitational-wave signals from inspiraling compact binaries with a network of laser-interferometric detectors. Phys Rev D, 2001, 64: 042004ADSCrossRefGoogle Scholar
  29. 29.
    Cutler C, Schutz B. Generalized F -statistic: Multiple detectors and multiple gravitational wave pulsars. Phys Rev D, 2005, 72: 063006ADSCrossRefGoogle Scholar
  30. 30.
    Hooper S, Chung S K, Luan J, et al. Summed parallel infinite impulse response filters for low-latency detection of chirping gravitational waves. Phys Rev D, 2012, 86(2): 024012ADSCrossRefGoogle Scholar
  31. 31.
    Nickolls J, Dally W J. The GPU computing era. IEEE Micro, 2010, 2: 56–69CrossRefGoogle Scholar
  32. 32.
    Dal Canton T, Nitz A H, Lundgren A P, et al. Implementing a search for aligned-spin neutron star-black hole systems with advanced ground based gravitational wave detectors. Phys Rev D, 2014, 90(8): 082004ADSCrossRefGoogle Scholar
  33. 33.
    McClanahan C. History and evolution of GPU architecture. A Paper Survey. http://mcclanahoochie.com/blog/wpcontent/uploads/2011/ 03/gpu-hist-paper.pdf, 2010Google Scholar
  34. 34.
    Cuda Nvidia. Nvidiacuda c programming guide. NVIDIA Corpo ration, 2011, 120Google Scholar
  35. 35.
    Ryoo S, Rodrigues C I, Baghsorkhi S S, et al. Optimization principles and application performance evaluation of a multithreaded GPU using CUDA. In: 13th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, 2008Google Scholar
  36. 36.
    Liu Y, Du Z H, Chung S K, et al. GPU-accelerated low-latency realtime searches for gravitational waves from compact binary coalescence. Class Quantum Grav, 2012, 29(23): 235018ADSCrossRefGoogle Scholar
  37. 37.
    The description of advanced LIGO, https://www.advancedligo.mit. edu/Google Scholar
  38. 38.
    The Virgo Collaboration. Advanced Virgo Baseline Design. Technical Report VIR-0027A-09, 2009Google Scholar
  39. 39.
    Kuroda K. (LCGT Collaboration). Status of LCGT. Class Quantum Grav, 2010, 27(8): 084004ADSMathSciNetCrossRefGoogle Scholar
  40. 40.
    Chung S K, Wen L, Blair D, et al. Applications of graphics processing units to search pipeline for gravitational waves from coalescing binaries of compact objects. Class Quantum Grav, 2010, 27: 135009ADSMathSciNetCrossRefGoogle Scholar
  41. 41.
    Allen B. X-2 time-frequency discriminator for gravitational wave detection. Phys Rev D, 2005, 71(6): 062001ADSCrossRefGoogle Scholar
  42. 42.
    Nitz A. The Effects of Spinning Neutron Stars and Black Holes on Gravitational-wave Searches for Binary Neutron Star and Neutron Star-black Hole Mergers. Dissertation for the Doctorial Degree. Syracuse: Syracuse University, 2015Google Scholar
  43. 43.
    Harry G M, Martin I W, Bassiri R, et al. Effect of heat treatment on mechanical dissipation in Ta2O5 coatings. Class Quantum Grav, 2010, 27: 084006ADSCrossRefGoogle Scholar
  44. 44.
    Aasi J, Abbott B P, Abbott R, et al. Advanced LIGO. Class Quantum Grav, 2015, 32(7): 074001ADSCrossRefGoogle Scholar
  45. 45.
    Metzger B D, Berger E. What is the most promising electromagnetic counterpart of a neutron star binary merger? Astrophys J, 2012, 746: 48ADSCrossRefGoogle Scholar
  46. 46.
    Nissanke S, Kasliwal M, Georgieva A. Identifying elusive electromagnetic counterparts to gravitational wave mergers: An and-to-end simulation. Astrophys J, 2013, 767: 124ADSCrossRefGoogle Scholar
  47. 47.
    Cowperthwaite P S, Berger E. A comprehensive study of detectability and contamination in deep rapid optical searches for gravitational wave counterparts. arXiv:1503.07869Google Scholar
  48. 48.
    Wen L, Fan X, Chen Y. Geometrical expression of the angular resolution of a network of gravitational-wave detectors and improved localization methods. J Phys Conf Ser, 2008, 122(1): 012038ADSCrossRefGoogle Scholar
  49. 49.
    Wen L, Chen Y. Geometrical expression for the angular resolution of a network of gravitational-wave detectors. Phys Rev D, 2010, 81(8): 082001ADSCrossRefGoogle Scholar
  50. 50.
    Nissanke S, Sievers J, Dalal N, et al. Localizing compact binary inspirals on the sky using ground-based gravitational wave interferometers. Astrophys J, 2011, 739: 99ADSCrossRefGoogle Scholar
  51. 51.
    Schutz B F. Networks of gravitational wave detectors and three figures of merit. Class Quantum Grav, 2011, 28(12): 125023ADSCrossRefGoogle Scholar
  52. 52.
    Fairhurst S, Source localization with an advanced gravitational wave detector network. Class Quantum Grav, 2011, 28(10): 105021ADSCrossRefGoogle Scholar
  53. 53.
    Sidery T, Aylott B, Christensen N, et al. Reconstructing the sky location of gravitational-wave detected compact binary systems: Methodology for testing and comparison. Phys Rev D, 2014, 89(8): 084060ADSCrossRefGoogle Scholar
  54. 54.
    Mohanty S D, Marka S, Rahkola R, et al. Gamma ray bursts and gravitational waves: Triggered search strategy in the LIGO science runs. Class Quantum Grav, 2004, 21: 765ADSCrossRefGoogle Scholar
  55. 55.
    Abbott B, Abbott R, Adhikari, et al. Beating the spin-down limit on gravitational wave emission from the Crab Pulsar. Astrophys J Lett, 2008, 683: L45–L49Google Scholar
  56. 56.
    Abadie J, Abbott B P, Abbott R, et al. First low-latency LIGO+Virgo search for binary inspirals and their electromagnetic counterparts. Astron Astrophys, 2012, 541: A155Google Scholar
  57. 57.
    Aasi J, Abadie J, Abbott B P, et al. First Searches for optical counterparts to gravitational-wave candidate events. Astrophys J Suppl Ser, 2014, 211: 7ADSCrossRefGoogle Scholar
  58. 58.
    Abadie J, Abbott B P, Abbott R, et al. Implementation and testing of the first prompt search for gravitational wave transients with electromagnetic counterparts. Astron Astrophys, 2012, 539: A124Google Scholar
  59. 59.
    Evans P A, Fridriksson J K, Gehrels N et al. Swift follow-up observations of candidate gravitational-wave transient events. Astrophys J Suppl Ser, 2012, 203: 28ADSCrossRefGoogle Scholar
  60. 60.
    Singer L P, Price L R, Farr B, et al. The first two years of electromagnetic follow-up with advanced LIGO and Virgo. Astrophys J, 2014, 795: 105ADSCrossRefGoogle Scholar
  61. 61.
    Punturo M, Abernathy M, Acernese F. The Einstein Telescope: A third-generation gravitational wave observatory. Class Quantum Grav, 2010, 17(19): 194002ADSCrossRefGoogle Scholar
  62. 62.
    Aartsen M G, Ackermann M, Adams J, et al. Multimessenger search for sources of gravitational waves and high-energy neutrinos: Initial results for LIGO-Virgo and IceCube. Phys Rev D, 2014, 90(10): 102002ADSCrossRefGoogle Scholar
  63. 63.
    Chassande-Mottin E, Hendry M, Sutton P, et al. Multimessenger astronomy with the Einstein Telescope. Gen Relat Grav, 2011, 43: 437–464ADSCrossRefGoogle Scholar
  64. 64.
    Andersson N, Baker J, Belczynski K, et al. The transient gravitational-wave sky. Class Quantum Grav, 2013, 30(19): 193002ADSCrossRefGoogle Scholar
  65. 65.
    Paczynski B. Gamma-ray bursters at cosmological distances. Astrophys J Lett, 1986, 308: L43–L46Google Scholar
  66. 66.
    Berger E, Price P A, Cenko S B, et al. The afterglow and elliptical host galaxy of the short γ-ray burst GRB 050724. Nature, 2005, 438: 988–990ADSCrossRefGoogle Scholar
  67. 67.
    Burrows D N, Grupe D, Capalbi M, et al. Jet breaks in short gammaray bursts. II. The collimated afterglow of GRB 051221A. Astrophys J, 2006, 653: 468–473CrossRefGoogle Scholar
  68. 68.
    Soderberg A M, Berger E, Kasliwal M, et al. The afterglow, energetics, and host galaxy of the short-hard gamma-ray burst 051221a. Astrophys J, 2006, 650: 261–271ADSCrossRefGoogle Scholar
  69. 69.
    Li L X, Paczy´nski B. Transient events from neutron star mergers. Astrophys J Lett, 507: L59–L62Google Scholar
  70. 70.
    Kulkarni S R. Modeling supernova-like explosions associated with gamma-ray bursts with short durations. arXiv:0510256Google Scholar
  71. 71.
    Metzger B D, Martínez-Pinedo G, Darbha S, et al. Electromagnetic counterparts of compact object mergers powered by the radioactive decay of r-process nuclei. Mon Not R Astron Soc, 2010, 406: 2650–2662ADSCrossRefGoogle Scholar
  72. 72.
    Kasen D, Fernández R, Metzger B D. Kilonova light curves from the disc wind outflows of compact object mergers. Mon Not R Astron Soc, 2015, 450: 1777–1786ADSCrossRefGoogle Scholar
  73. 73.
    Singer L P, Price L R. WHOOMP! (There It Is) Rapid Bayesian position reconstruction for gravitational-wave transients. arXiv:1508. 03634Google Scholar
  74. 74.
    Cannon K, Cariou R, Chapman A, et al. Toward early-warning detection of gravitational waves from compact binary coalescence. Astrophys J, 2012, 748: 136ADSCrossRefGoogle Scholar
  75. 75.
    Beauville F, Bizouard M-A, Blackburn L, et al. Detailed comparison of LIGO and Virgo inspiral pipelines in preparation for a joint search. Class Quantum Grav, 2008, 25: 045001ADSCrossRefGoogle Scholar
  76. 76.
    Luan J, Hooper S, Wen L, et al. Towards low-latency real-time detection of gravitational waves from compact binary coalescences in the era of advanced detectors. Phys Rev D, 2012, 85(10): 102002ADSCrossRefGoogle Scholar
  77. 77.
    Liu Y, Du Z, Chung S K, et al. GPU-accelerated low-latency real-time searches for gravitational waves from compact binary coalescence. Class Quantum Grav, 2012, 29(23): 235018ADSCrossRefGoogle Scholar
  78. 78.
    Aasi J, Abadie J, Abbott B P, et al. Prospects for localization of gravitational wave transients by the advanced LIGO and advanced Virgo observatories. arXiv:1304.0670Google Scholar
  79. 79.
    Raffai P, Gondán L, Heng I S, et al. Optimal networks of future gravitational-wave telescopes. Class Quantum Grav, 2013, 30(15): 155004ADSCrossRefGoogle Scholar
  80. 80.
    Hu Y-M, Raffai P, Gondán L, et al. Global optimization for future gravitational wave detector sites. Class Quantum Grav, 2015, 32(10): 105010ADSCrossRefGoogle Scholar
  81. 81.
    Tanvir N R, Levan A J, Hjorth J, et al. A ‘kilonova’ associated with the short-duration ?-ray burst GRB 130603B. Nature, 2013, 500: 547–549Google Scholar
  82. 82.
    Yang B, Jin Z-P, Covino S, et al. A possible macronova in the late afterglow of the long-short burst GRB 060614. Nat Commun, 2015, 6: 7323ADSCrossRefGoogle Scholar
  83. 83.
    Jin Z-P, Li X, Cano Z, et al. The light curve of the macronova associated with the long-short burst GRB 060614. Astrophys J Lett, 2015, 811: L22ADSCrossRefGoogle Scholar
  84. 84.
    Abbott B, Abbott R, Adhikari R, et al. Implications for the origin of GRB 070201 from LIGO Observations. Astrophys J, 2008, 681: 1419–1430ADSCrossRefGoogle Scholar
  85. 85.
    Abadie J, Abbott B P, Abbott T D. Implications for the origin of GRB 051103 from LIGO observations. Astrophys J, 2012, 755: 2ADSCrossRefGoogle Scholar
  86. 86.
    Hanna C, Mandel I, Vousden W. Utility of galaxy catalogs for following up gravitational waves from binary neutron star mergers with wide-field telescopes. Astrophys J, 2014, 784: 8ADSCrossRefGoogle Scholar
  87. 87.
    White D J, Daw E J, Dhillon V S. A list of galaxies for gravitational wave searches. Class Quantum Grav, 2011, 28(8): 085016ADSMathSciNetCrossRefGoogle Scholar
  88. 88.
    Nuttall L K, Sutton P J. Identifying the host galaxy of gravitational wave signals. Phys Rev D, 2010, 82(10): 102002ADSCrossRefGoogle Scholar
  89. 89.
    Nuttall L K, White D J, Sutton P J, et al. Large-scale image processing with the ROTSE Pipeline for follow-up of gravitational wave events. Astrophys J Suppl Ser, 2013, 209: 24ADSCrossRefGoogle Scholar
  90. 90.
    Kanner J, Camp J, Racusin J, et al. Seeking counterparts to advanced LIGO/Virgo transients with swift. Astrophys J, 2012, 759: 22ADSCrossRefGoogle Scholar
  91. 91.
    Ando S, Baret B, Bartos I, et al. Colloquium: Multimessenger astronomy with gravitational waves and high-energy neutrinos. Rev Mod Phys, 2013, 85(0): 1401–1420ADSCrossRefGoogle Scholar
  92. 92.
    Fan X, Messenger C, Heng I S. A Bayesian approach to multimessenger astronomy: Identification of gravitational-wave host galaxies. Astrophys J, 2014, 795: 43ADSCrossRefGoogle Scholar
  93. 93.
    Bartos I, Crotts A P S, Márka S. Galaxy survey on the fly: Prospects of rapid galaxy cataloging to aid the electromagnetic follow-up of gravitational wave observations. Astrophys J Lett, 2015, 801: L1Google Scholar
  94. 94.
    Nissanke S, Holz D E, Hughes S A, et al. Exploring short gamma-ray bursts as gravitational-wave standard sirens. Astrophys J, 2010, 725: 496–514ADSCrossRefGoogle Scholar
  95. 95.
    Adrián-Martínez S, Al Samarai I, Albert A, et al. A first search for coincident gravitational waves and high energy neutrinos using LIGO, Virgo and ANTARES data from 2007. J Cosmol Astropart Phys, 2013, 6: 8ADSCrossRefGoogle Scholar
  96. 96.
    Fan X, Messenger C, Heng I S. Enhancing gravitational wave astronomy with galaxy catalogues. Astrophys Space Sc Proc, 2015, 40: 35ADSCrossRefGoogle Scholar
  97. 97.
    Schutz B F. Determining the Hubble constant from gravitational wave observations. Nature, 1986, 323: 310ADSCrossRefGoogle Scholar
  98. 98.
    Sathyaprakash B S, Schutz B F, Van Den Broeck C. Cosmography with the Einstein Telescope. Class Quantum Grav, 2010, 27(21): 215006ADSCrossRefGoogle Scholar
  99. 99.
    Zhao W, Van Den Broeck, Baskaran D, et al. Determination of dark energy by the Einstein Telescope: Comparing with CMB, BAO, and SNIa observations. Phys Rev D, 2011, 83(2): 023005ADSCrossRefGoogle Scholar
  100. 100.
    Holz D E, Hughes S A. Black hole physics, cosmology: observations, cosmology: theory, galaxies: nuclei, cosmology: gravitational lensing, gravitational waves. Astrophys J, 2005, 629: 15–22ADSCrossRefGoogle Scholar
  101. 101.
    Deffayet C, Menou K. Probing gravity with spacetime sirens. Astrophys J Lett, 2004, 668: L143–L146Google Scholar
  102. 102.
    Amaro-Seoane P, Aoudia S, Babak S, et al. Low-frequency gravitational-wave science with eLISA/NGO. Class Quantum Grav, 2012, 29(12): 124016ADSCrossRefGoogle Scholar
  103. 103.
    Nissanke S, Holz D E, Dalal N, et al. Determining the Hubble constant from gravitational wave observations of merging compact binaries. arXiv:1307.2638Google Scholar
  104. 104.
    Freedman W L, Madore B F. The Hubble constant. Annu Rev Astron Astrophys, 2010, 48: 673–710ADSCrossRefGoogle Scholar
  105. 105.
    Taylor S R, Gair J R, Mandel I. Cosmology using advanced gravitational-wave detectors alone. Phys Rev D, 2012, 85(2): 023535ADSCrossRefGoogle Scholar
  106. 106.
    Taylor S R, Gair J R. Cosmology with the lights off: Standard sirens in the Einstein Telescope era. Phys Rev D, 2012, 86(2): 023502ADSCrossRefGoogle Scholar
  107. 107.
    MacLeod C L, Hogan C. Precision of Hubble constant derived using black hole binary absolute distances and statistical redshift information. Phys Rev D, 2008, 77(4): 043512ADSCrossRefGoogle Scholar
  108. 108.
    Petiteau A, Babak S, Sesana A. Constraining the dark energy equation of state using LISA observations of spinning massive black hole binaries. Astrophys J, 2011, 732: 82ADSCrossRefGoogle Scholar
  109. 109.
    Del Pozzo W. Measuring the Hubble constant using gravitational waves. J Phys Conf Ser, 2014, 484(1): 012030ADSCrossRefGoogle Scholar
  110. 110.
    Messenger C, Read J. Measuring a cosmological distance-redshift relationship using only gravitational wave observations of binary neutron star coalescences. Phys Rev Lett, 2012, 108(9): 091101ADSCrossRefGoogle Scholar
  111. 111.
    Messenger C, Takami K, Gossan S, et al. Source redshifts from gravitational-wave observations of binary neutron star mergers. Phys Rev X, 2014, 4(4): 041004Google Scholar
  112. 112.
    Del Pozzo W, Li T G, Messenger C. Cosmological inference using gravitational wave observations alone. arXiv:1506.06590Google Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of Physics and AstronomySeoul National UniversitySeoulKorea
  2. 2.Research Institute of Information Technology, Tsinghua National Laboratory for Information Science and TechnologyTsinghua UniversityBeijingChina
  3. 3.Tsinghua National Laboratory for Information Science and Technology, Department of Computer Science and TechnologyTsinghua UniversityBeijingChina
  4. 4.School of PhysicsThe University of Western AustraliaCrawleyAustralia
  5. 5.Department of PhysicsIIT KanpurKanpurIndia
  6. 6.Inter-University Centre for Astronomy and AstrophysicsGaneshkhind, PuneIndia
  7. 7.Department of Physics & AstronomyWashington State UniversityPullmanUSA
  8. 8.School of Physics and Electronics InformationHubei University of EducationWuhanChina
  9. 9.SUPA, School of Physics and AstronomyUniversity of GlasgowGlasgowUK

Personalised recommendations