Advertisement

Two-stage acceleration of interstellar ions driven by high-energy lepton plasma flows

  • YunQian Cui
  • ZhengMing Sheng
  • QuanMing Lu
  • YuTong Li
  • Jie Zhang
Article Plasma Physics

Abstract

We present the particle-in-cell (PIC) simulation results of the interaction of a high-energy lepton plasma flow with background electron-proton plasma and focus on the acceleration processes of the protons. It is found that the acceleration follows a two-stage process. In the first stage, protons are significantly accelerated transversely (perpendicular to the lepton flow) by the turbulent magnetic field “islands” generated via the strong Weibel-type instabilities. The accelerated protons shows a perfect inverse-power energy spectrum. As the interaction continues, a shockwave structure forms and the protons in front of the shockwave are reflected at twice of the shock speed, resulting in a quasi-monoenergetic peak located near 200 MeV under the simulation parameters. The presented scenario of ion acceleration may be relevant to cosmic-ray generation in some astrophysical environments.

Keywords

particle acceleration Fermi acceleration collisionless shock lepton plasma flow 

References

  1. 1.
    Fermi E. On the origin of the cosmic radiation. Phys Rev, 1949, 75: 1169–1174zbMATHCrossRefADSGoogle Scholar
  2. 2.
    Aharonian F, Akhperjanian A G, Bazer-Bachi A R, et al. Discovery of the two wings of the kookaburra complex in vhe γ-rays with hess. Astron Astrophys, 2006, 456: 245–251CrossRefADSGoogle Scholar
  3. 3.
    Aharonian F, Akhperjanian A G, Bazer-Bachi A R, et al. First detection of a vhe gamma-ray spectral maximum from a cosmic source: Hess discovery of the vela x nebula. Astron Astrophys, 2006, 448: L43–L47CrossRefADSGoogle Scholar
  4. 4.
    Ginzburg V L and Syrovatsk S I. Developments in the theory of synchrotron radiation and its reabsorption. Ann Rev Astron Astrophys, 1969, 7: 375–420CrossRefADSGoogle Scholar
  5. 5.
    Bhattacharjee P, Sigl G. Origin and propagation of extremely highenergy cosmic rays. Phys Rep, 2000, 327: 109–247CrossRefADSGoogle Scholar
  6. 6.
    Olinto A V. Ultra high energy cosmic rays: The theoretical challenge. Phys Rep, 2000, 333–334: 329–348CrossRefGoogle Scholar
  7. 7.
    Hoshino M. Stochastic particle acceleration in multiple magnetic islands during reconnection. Phys Rev Lett, 2012, 108: 135003CrossRefADSGoogle Scholar
  8. 8.
    Blandford R, Eichler D. Particle acceleration at astrophysical shocks: A theory of cosmic ray origin. Phys Rep, 1987, 154: 1–75CrossRefADSGoogle Scholar
  9. 9.
    Wang B, Yuan Q, Fan C, et al. A study on the sharp knee and fine structures of cosmic ray spectra Sci China-Phys Mech Astron, 2010, 53: 842–847CrossRefADSGoogle Scholar
  10. 10.
    Begelman M C, Rees M J, Sikora M. Energetic and radiative constraints on highly relativistic jets. Astrophys J, 1994, 429: L57–L60CrossRefADSGoogle Scholar
  11. 11.
    Zhang B, Meszaros P. Gamma-ray bursts: Progress, problems & prospects. Int J Mod Phys A, 2004, 19: 2385–2472CrossRefADSGoogle Scholar
  12. 12.
    Piran T. The physics of gamma-ray bursts. Rev Mod Phys, 2005, 76: 1143–1210CrossRefADSGoogle Scholar
  13. 13.
    Loeb A, Waxman E. Cosmic γ-ray background from structure formation in the intergalactic medium. Nature, 2000, 405: 156–158CrossRefADSGoogle Scholar
  14. 14.
    Gruzinov A. Gamma-ray burst phenomenology, shock dynamo, and the first magnetic fields. Astrophys J Lett, 2001, 563: L15–L18CrossRefADSGoogle Scholar
  15. 15.
    Ucer D, Shapiro V D. Unlimited relativistic shock surfing acceleration. Phys Rev Lett, 2001, 87: 075001CrossRefADSGoogle Scholar
  16. 16.
    Haugbølle T. Three-dimensional modeling of relativistic collisionless ion-electron shocks. Astrophys J Lett, 2011, 739: L42–L45.CrossRefADSGoogle Scholar
  17. 17.
    Martins S F, Fonseca R A, Silva L O, et al. Ion dynamics and acceleration in relativistic shocks. Astrophys J Lett, 2009, 695: L189–L192CrossRefADSGoogle Scholar
  18. 18.
    Amato E, Arons J. Heating and nonthermal particle acceleration in relativistic, transverse magnetosonic shock waves in proton-electronpositron plasmas. Astrophys J, 2006, 653: 325–338CrossRefADSGoogle Scholar
  19. 19.
    Yang Z Y, Lu Q M, Lembege B, et al. Shock front nonstationarity and ion acceleration in supercritical perpendicular shocks. J Geophys Res-Space Phys, 2009, 114: 2156–2202CrossRefGoogle Scholar
  20. 20.
    van der Swaluw E, Achterberg A, Gallant Y A, et al. Interaction of high-velocity pulsars with supernova remnant shells. Astron Astrophys, 2003, 397: 913–920CrossRefADSGoogle Scholar
  21. 21.
    Waxman E. Gamma-ray bursts and collisionless shocks. Plasma Phys Control Fusion, 2006, 48: B137CrossRefGoogle Scholar
  22. 22.
    Chomiuk L, Linford J D, Yang J, et al. Binary orbits as the driver of γ-ray emission and mass ejection in classical novae. Nature, 2014, 514: 339–342CrossRefADSGoogle Scholar
  23. 23.
    Wardle J F C, Homan D C, Ojha R, et al. Electron-positron jets associated with the quasar 3C279. Nature, 1998, 395: 457–461CrossRefADSGoogle Scholar
  24. 24.
    Ruffini R, Vereshchagin G, Xue S S. Electron-positron pairs in physics and astrophysics: From heavy nuclei to black holes. Phys Rep, 2010, 487: 1–140CrossRefADSGoogle Scholar
  25. 25.
    Cui Y Q. Numerical Studies on Selected Problems in the Interaction of Intense Lasers/Particle Beams with Bulk Plasma. Dissertation for the Doctoral Degree. Beijing: University of Chinese Academy of Sciences, 2015Google Scholar
  26. 26.
    Wang W M, Gibbon P, Sheng Z M, et al. Integrated simulation approach for laser-driven fast ignition. Phys Rev E, 2015, 91: 013101CrossRefADSGoogle Scholar
  27. 27.
    Mondal S, Narayanan V, Ding W J, et al. Direct observation of turbulent magnetic fields in hot, dense laser produced plasmas. Proc Natl Acad Sci UAS, 2012, 109: 8011–8015CrossRefADSGoogle Scholar
  28. 28.
    Su L N, Zheng Y, Liu M, et al. Proton angular distribution research by a new angle-resolved proton energy spectrometer. Sci China-Phys Mech Astron, 2014, 57: 844–848CrossRefADSGoogle Scholar
  29. 29.
    Silva L O, Fonseca R A, Tonge J W, et al. Interpenetrating plasma shells: Near-equipartition magnetic field generation and nonthermal particle acceleration. Astrophys J, 2003, 596: L121–L124CrossRefADSGoogle Scholar
  30. 30.
    Nishikawa K I, Hardee P, Richardson G, et al. Particle acceleration in relativistic jets due to weibel instability. Astrophys J, 2003, 595: 555–563CrossRefADSGoogle Scholar
  31. 31.
    Frederiksen J T, Hededal C B, Haugbølle T, et al. Magnetic field generation in collisionless shocks: Pattern growth and transport. Astrophys J, 2004, 608: L13–L16CrossRefADSGoogle Scholar
  32. 32.
    Blandford R D, McKee C F. Fluid dynamics of relativistic blast waves. Phys Fluids, 1976, 19: 1130–1138zbMATHCrossRefADSGoogle Scholar
  33. 33.
    Fiuza F, Fonseca R A, Tonge J, et al. Weibel-instability-mediated collisionless shocks in the laboratory with ultraintense lasers. Phys Rev Lett, 2012, 108: 235004CrossRefADSGoogle Scholar
  34. 34.
    Ter-Antonyan S. Sharp knee phenomenon of primary cosmic ray energy spectrum. Phys Rev D, 2014, 89: 123003CrossRefADSGoogle Scholar
  35. 35.
    Garyaka A P, Martirosov R M, Ter-Antonyan S V, et al. Rigiditydependent cosmic ray energy spectra in the knee region obtained with the gamma experiment. Astropart Phys, 2007, 28: 169–181CrossRefADSGoogle Scholar
  36. 36.
    Gahn C, Tsakiris G D, Pretzler G, et al. Generating positrons with femtosecond-laser pulses, Appl Phys Lett, 2000, 77: 2662–2664CrossRefADSGoogle Scholar
  37. 37.
    Chen H, Wilks S C, Meyerhofer D D, et al. Relativistic quasimonoenergetic positron jets from intense laser-solid interactions. Phys Rev Lett, 2010, 105: 015003CrossRefADSGoogle Scholar
  38. 38.
    Sarri G, Poder K, Cole J M, et al. Generation of neutral and highdensity electron C positron pair plasmas in the laboratory. Nature Comm, 2015, 6: 6747CrossRefADSGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • YunQian Cui
    • 1
  • ZhengMing Sheng
    • 2
    • 3
    • 4
  • QuanMing Lu
    • 5
  • YuTong Li
    • 1
  • Jie Zhang
    • 3
    • 4
  1. 1.Beijing National Laboratory of Condensed Matter PhysicsInstitute of Physics, Chinese Academy of SciencesBeijingChina
  2. 2.Scottish Universities Physics Alliance, Department of PhysicsUniversity of StrathclydeGlasgowUK
  3. 3.Key Laboratory for Laser Plasmas (MoE) and Department of Physics and AstronomyShanghai Jiao Tong UniversityShanghaiChina
  4. 4.IFSA Collaborative Innovation CenterShanghai Jiao Tong UniversityShanghaiChina
  5. 5.School of Earth and Space SciencesUniversity of Science and Technology of ChinaHefeiChina

Personalised recommendations